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Signal decorrelation is a major source of error in the displacements estimated using correlation
techniques for elastographic imaging. Previous papers have addressed the variation in the
correlation coefficient as a function of the applied compression for a finite window size and an
insonification angle of zero degrees. The recent use of angular beam-steered radio-frequency echo
signals for spatial angular compounding and shear strain estimation have demonstrated the need for
understanding signal decorrelation artifacts for data acquired at different beam angles. In this paper,
we provide both numerical and closed form theoretical solutions of the correlation between pre- and
post-compression radio-frequency echo signals acquired at a specified beam angle. The expression
for the correlation coefficient obtained is a function of the beam angle and the applied compression
for a finite duration window. Accuracy of the theoretical results is verified using tissue-mimicking
phantom experiments on a uniformly elastic phantom using beam-steered data acquisitions on a
linear array transducer. The theory predicts a faster decorrelation with changes in the beam or
insonification angle for longer radio-frequency echo signal segments and at deeper locations in the
medium. Theoretical results provide useful information for improving angular compounding and
shear strain estimation techniques for elastography.
© 2006 Acoustical Society of America. �DOI: 10.1121/1.2195290�
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I. INTRODUCTION

Elastography, a method for imaging the tissue stiffness,
has gained interest for the diagnosis of disease in recent
years.1–16 This method estimates local strains typically in the
direction of compression by computing the gradient of shifts
in echo arrival times after a quasistatic tissue compression.
The echo shifts or tissue displacement are computed using a
one-dimensional gated cross-correlation analysis of the pre-
and post-compression radio-frequency �RF� signals, with
overlapping windows to improve resolution. Recent reports
have presented approaches that estimate both the normal and
shear strains in elastography.16,17 However, the distortion of
the echo signal as a result of the applied compression intro-
duces decorrelation noise, which is a major source of error in
strain imaging.3,4

Many algorithms have been developed to reduce decor-
relation noise and to improve the elastographic signal-to-
noise ratio �SNRe�, such as temporal stretching,18–20 multi-
compression averaging,21 and wavelet denoising.22 Spatial-
angular compounding for elastography was recently
introduced by our group23–25 to reduce noise artifacts in the
resulting compounded elastograms. This method averages
multiple weighted angular strain estimates around the same
region-of-interest �ROI� acquired from different beam in-
sonification angles. Elastograms generated from the pre- and
post-compression signals acquired at these different beam
angles are referred to as angular elastograms. However, as
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previously described,24,25 when the ultrasound beam is
steered away from the direction of compression, the angular
elastograms suffer from larger echo signal decorrelation in
the pre- and post-compression RF echo signals, when com-
pared to the nonsteered condition, where the data acquisition
and the direction of compression are the same. To investigate
and optimize the performance of spatial-angular compound-
ing for elastography, it would be helpful to have a priori
knowledge regarding the noise properties of the compounded
angular elastograms. The correlation coefficient has been uti-
lized previously to ascertain the degree of signal decorrela-
tion and to quantify improvements in strain imaging perfor-
mance. In this paper, a theoretical formulation is therefore
developed to account for the increased signal decorrelation
between the pre- and post-compression RF signals acquired
when the ultrasound beam is at a different angle with respect
to the direction of compression.

To measure the performance of the cross correlation
based strain estimator, a large amount of theoretical work has
been reported in the literature to calculate the correlation
coefficient between the pre- and post-compression RF
signals.26–30 The correlation coefficient with motion compen-
sation due to the axial deformation of elastic tissue was de-
rived by Meunier and Bertrand26 using a two-dimensional
�2D� Gaussian model. Cross-correlation functions for tissue
like media that exhibit deterministic and stochastic strain
profiles were derived by Bilgen and Insana.27 To study the
degradation in the elastographic image quality due to the
lateral and elevational motion of the scatterers, a 3D model
was proposed by Kallel and Ophir28 for predicting the corre-

lation coefficient using separable point-spread functions in
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the axial, lateral, and elevational directions, respectively. An
expression for the correlation coefficient that depends on
both the applied compression and the finite size of the win-
dow used for the cross-correlation processing was developed
by Varghese et al.29 This formulation accounted for the in-
trawindow signal decorrelation due to the applied compres-
sion. The performance of the standard cross correlation ap-
proach used to estimate the complex motions and the
resulting deformations in 3D was investigated by Bilgen.30

However, all these models assume that the compression and
ultrasound beam are along the same direction, and therefore
are not suitable to compute the correlation coefficient for
angular elastograms obtained by beam steering.

Many studies have also been performed to investigate
spatial correlations in ultrasound speckle pattern motion in
medical ultrasonic images.31–35 All of these prior studies
were directed toward B-mode image compounding, where
the theories developed studied correlations between echo sig-
nals acquired from the same spatial location but different
insonification angles to reduce speckle noise artifacts in the
B-mode images. The analysis was recently extended by Chen
et al.36 to study the correlation of RF signals that intersect at
the same spatial location obtained from different angular in-
sonifications. This formulation is useful in evaluating the im-
provement in parametric images of the scatterer size or at-
tenuation coefficient with spatial angular compounding,
since these parameters are estimated from the angular RF
data. Since the contribution of the insonification angle was
addressed in these models we have modified this approach to
investigate angular compounding for elastography by includ-
ing the applied compression and the use of a finite sized
processing window.

In this paper, initially following the framework used by
Chen et al.,36 a closed form expression is derived for the
correlation coefficient between pre- and post-compression
RF signals acquired at specific beam angles. To corroborate
the theoretical development, experimental results using a
tissue-mimicking phantom are presented that verify and vali-
date the theoretical expressions. Factors that affect the signal
decorrelation versus the beam angle are discussed. Both the
rigorous numerical derivation and the closed form expres-
sions for the correlation coefficient can be used to predict the
rate of signal decorelation in the angular elastograms and
provide a clear understanding of the performance of angular
compounding techniques in elastography.

II. THEORY

Ultrasonic RF echo signals before and after compression
is modeled by

s1�x,z� = P�x,z� � T�x,z� ,

s2�x,z� = P�x,z� � T�x,az� , �1�

where the subscripts 1 and 2, specify the pre- and post-
compression echo signals obtained from an elastic tissue me-
dium, T�x ,z� denotes the tissue scattering function, and
P�x ,z� is the pulse-echo point-spread function �PSF� of the

imaging system. The symbol � denotes the convolution op-
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eration. The parameter a is the compression or strain factor
that scales the tissue scattering function defined in terms of
the actual applied tissue strain �, a=1/ �1−���1+� for �
�1. Here a 2D model is used because the ultrasound beam
in currently available transducers is much wider in the eleva-
tional direction compared to the lateral direction. Thus, the
scatterer movement in the elevational direction does not
cause significant loss of coherence in the echoes.

There are several models that define the T�x ,z� term. To
simplify the tissue model, we assume a large number of very
small inhomogeneities �Rayleigh scatterers� with respect to
the wavelength of the PSF26

T�x,z� = �
i

Ti��x − xi,z − zi� , �2�

where ��x ,z� is the 2D Dirac or impulse function, �xi ,zi�
denotes the randomly distributed centers of each inhomoge-
neity, and Ti the echogenicity of each scatterer. The scatterer
distribution is assumed to be � correlated, which means the
correlation length of scatterers is very short compared to the
acoustic wavelength of the transmit pulse.

The cumulative signal amplitude from scatterers at po-
sition O1 �x01,z01� in the precompression medium can be
written as31

s1 = �
i

�Ti��P1,i�exp�j�i� . �3�

The subscript i refers to an individual scatterer, �P� is the
magnitude of the pulse-echo PSF from the scatterers, and
exp�j�� represents the combined phase of T and P. The
phase factors in � are uniformly distributed over 2� radi-
ans with zero mean. An illustration of this concept is
shown in Fig. 1. We establish our coordinates by setting
the position of transducer as the origin, and the beam
steering angle is �.

A quasistatic compression is then applied to the medium
along the −z direction, with the scatterers moving toward the
transducer. For simplicity, we assume the position O1 is at
the center of the medium in the lateral direction, which im-
plies that the scatterer movement in the lateral direction is

FIG. 1. �Color online� Schematic diagram illustrating the acquisition of pre-
and post-compression RF signals with a beam steering angle �. The precom-
pression RF signals are obtained from scatterers at position O1, while the
post-compression signals are obtained from the corresponding scatterers at
location O2.
small enough to be considered negligible. Thus, tissue scat-
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terers around O1 move to position O1� after compression, as
shown in Fig. 1. The post-compression signal is then gener-
ated from scatterers at position O2 �x02,z02�, which are the
projection positions of O1� on the ultrasound beam. The cu-
mulative signal strength after compression can be written as

s2 = �
i

�Ti��P2,i�exp�j�i�exp�j��i� , �4�

where ��i is the phase difference between pre- and post-
compression signals, which can be written as 4��R2,i

−R1,i� /	0, where 	0 is the wavelength at the center fre-
quency, and R1,i, R2,i are the distances from the ith scatterer
to the transducer for the pre- and post-compression situa-
tions, respectively,

R1,i = �xi
2 + zi

2,

R2,i = �xi
2 + �zi/a�2, �5�

R2,i − R1,i =
1 − a2

a2�R1,i + R2,i�
zi

2.

The cross correlation between the signals acquired be-
fore and after compression can be written as31

	s1s2
*
 = �

i

�Ti�2�P1,i��P2,i�exp�j��i� . �6�

The 2D PSF in the focal zone of each ultrasound beam
of a linear array transducer can be expressed in the following
form:

�P�x,z�� = px�x�pz�z� , �7�

where px represents the lateral beam spread function, and pz

represents the axial spread function. For a rectangular aper-
ture, for example, the lateral PSF for a pulse-receive re-
sponse at the focus or in the far-field can be written as

px�x� = sin2��f0x�/��f0x�2, �8�

where f0=D /r	0, D is the effective transducer aperture, and
r is the focal distance, r=z01,02/cos �. If we assume that the
ultrasound pulse transmitted by the transducer has a
Gaussian envelope with characteristic width 
z, then pz

can be expressed as

pz�z� = exp�− z2/2
z
2� . �9�

For the ith scatterer, the lateral distances to the beam axis
for the pre- and post-compression cases can be written as

l1,i� = �xi − x01�cos � − �zi − z01�sin � ,

l2,i� = �xi − x02�cos � − �zi/a − z02�sin � . �10�

Similarly, the axial distances from the ith scatterer to the
center point are

l1,i� = �xi − x01�sin � + �zi − z01�cos � ,

�11�
l2,i� = �xi − x02�sin � + �zi/a − z02�cos � .

th
Hence, the PSF for the i scatterer can be written as
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Pk,i = px�lk,i� �pz�lk,i� �, �k = 1,2� . �12�

Substituting Eq. �12�, into Eq. �6�, we obtain

	s1s2
*
 = �

i

�Ti�2�px�l1,i� ���pz�l1,i� ���px�l2,i� ���pz�l2,i� ��

�exp�j��i� . �13�

Going to a continuous representation, xi and zi become x
and z, and the summation becomes a 2D integral about x and
z. Thus,

	s1s2
*
 = B�� � �px�l1����pz�l1����px�l2����pz�l2���

�exp�j���dxdz , �14�

where B� is a normalization factor. An analytical closed form
solution for the above equation is difficult to obtain. Thus, it
is necessary to either resort to numerical solutions or apply
approximations to simplify the expression in Eq. �14�.

To simplify the 2D integral in Eq. �14�, we utilize a
Gaussian envelope to model the lateral PSF as shown

px�x� = exp�− x2/2
x
2� . �15�

For small beam angles ���10° �, sin ��cos �, the sin �
term in Eqs. �10� and �11� can be ignored. The phase term
exp �4�j�R2−R1� /	0 � in Eq. �14� is a function of x and z.
Since only scatterers close to the region of interest con-
tribute to the signal, we can approximate the phase term as
exp�2�jz cos ��1−a2� /a2	0�. We can then perform the in-
tegration in the lateral and axial direction separately as
discussed by Wagner et al.31 and obtain

	s1s2
*
 = B�� �pz��z − z01�cos ����pz��z/a

− z02�cos ���exp�2�jz cos �
1 − a2

a2	0
dz , �16�

where B� is the integral in the lateral direction

B� =

x

cos �
�� exp�−

1

4

cos2 �


x
2 �x01 − x02�2 . �17�

Equation �16� follows the notation of a Fourier transforma-
tion �FT�. The cross-correlation function is therefore a FT of
the multiplication of the two PSF

	s1s2
*
 = B��FT��pz��z − z01�cos ����pz��z/a

− z02�cos ����� f=��1−a2�/a2	0� cos �, �18�

where FT denotes the Fourier transformation operator. The
correlation coefficient is defined as27

 =
	s1s2

*

�	s1s1

*
	s2s2
*


. �19�

Substituting Eq. �18� into Eq. �19� and after the integration

procedure we obtain
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 =� 2a

a2 + 1
exp�−

cos2 �

4
� �x01 − x02�2


x
2

+
�z01 − az02�2


z
2 �exp�−


z
2�2f2

cos2 �
�

f=��1−a2�/a2	0� cos �

.

�20�

For elastographic processing, finite gated segments of
the echo signal are utilized. The displacement at location O1

is estimated from RF segments illustrated with thick lines, as
shown in Fig. 2. A gated data segment is generally selected
using a rectangular window. Generally, the same window is
used for both pre- and post-compression data segments. At-
tenuation and focusing effects can be included in the window
function w�t�, so that the intensity of s�t� can be taken to be
constant with depth. Thus, the correlation coefficient be-
tween the pre- and post-compression signals can be written
as

1,2 =

�
t1

t2

w2�t�	s1�t�s2
*�t�
/Īdt

�
t1

t2

w2�t�dt

=

�
−L/2

L/2

w2���	s1���s2
*���
/Īd�

�
−L/2

L/2

w2���d�

=

�
−L/2

L/2

w2������d�

�
−L/2

L/2

w2���d�

,

�21�

where L is the window length for the RF echo signal seg-

ment, Ī= 	s ·s*
 is the mean signal intensity. � is the distance
from scatterers in the volume giving rise to the RF segment
to the point of interest. The  parameter inside the integral
can be either the numerical result of Eq. �14�, or its approxi-
mated version in Eq. �20�.

Figure 3 shows a comparison of the correlation coeffi-
cient obtained using the numerical integration of Eq. �14�
and the approximated expression using Eq. �20�. The follow-
ing parameter values were used for the calculations: L
=3 mm, D=1.8 cm, center frequency fc=5 MHz with a 50%

FIG. 2. �Color online� Schematic illustration of the angular RF data segment
acquired before and after compression.
bandwidth, and z01=3 cm. To approximate the lateral PSF,
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we used 
x=0.2 mm in Eq. �15�. As shown in Fig. 3, the
approximated curves �dashed lines� are very close to the nu-
merical results �solid lines� at small beam angles ��10° �.
However, the deviation of the approximated results becomes
larger as the beam angle increases. This result demonstrates
that the approximation is accurate only for the small beam
angle, and has to be used with caution to model the decorre-
lation from larger beam angles.

III. EXPERIMENTAL VALIDATION

A. Method

The theoretical results derived in the previous section
are verified and validated using experimental data acquired
using a clinical ultrasound scanner. Pre- and post-
compression RF data were obtained using a uniformly elastic
tissue-mimicking phantom of size 10�10�10 cm3, manu-
factured in our laboratory.37 The phantom was scanned using
an Ultrasonix 500RP �Ultrasonix Medical Corporation, Both-
ell, WA and Vancouver, BC, Canada� real-time scanner
equipped with a 5 MHz linear-array transducer with an ap-
proximate 60% bandwidth. The Ultrasonix 500RP is
equipped with an ultrasound research interface �URI� that
readily allows an expert programmer to alter and change the
standard operating conditions and introduce new echo signal
processing techniques. The Ultrasonix system setup used in
our experiment enables beam steering within the angle range
from −15° to 15°. In order to acquire RF data at different
beam angles, we developed a URI client program, to com-
municate with the Ultrasonix URI and software server to
control the beam steering algorithm. The URI client program
enables the operator to input the maximum angle and the
angular increment, and the machine will automatically scan
the phantom at the specified angles during the angular
sweep. In our experiment, the phantoms were scanned from
0° to 15° with a minimum angular increment of 0.75°.

The stepper motor controlled quasistatic compression of
the phantom is also controlled by the URI client program on
the Ultrasonix 500RP system. The program controls the step-
per motor apparatus that enables synchronized acquisition of

FIG. 3. Comparison between the exact numerical and approximated theo-
retical expression for the correlation coefficient. The correlation coefficient
curves are plotted versus the beam angle.
both the pre- and post-compression RF data sets after a
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quasi-static compression. A compression plate with a rectan-
gular slot fitted with the transducer was mounted on a linear
stage �Velmex Inc., Bloomfield, NY� driven by a stepper
motor. The compression plate is larger than the phantom sur-
face to provide a uniform compression of the phantom. The
compression was applied along the axial direction, i.e., angle
0°, without beam steering. Echo signals were acquired, from
a 40�40 mm2 ROI �starting at a depth of 10 mm under the
transducer� for applied strains ranging from 0.5 to 3% at
steps of 0.5%.

We have implemented an automated beam-steering and
data acquisition algorithm on the Ultrasonix system. The al-
gorithm first acquires the precompression data along the
specified angular sweep �0° to 15°� at 0.75° increments. The
stepper motor is then activated to compress the phantom at a
specified compression increment �0.5%�, following which
the post-compression RF data are acquired following the
same angular scan sequence. In order to obtain statistically
independent results, pre- and post-compression data were ac-
quired over ten independent realizations along the different
scanning planes and at different pre-compression levels.

Each of the angular pre- and post-compression RF
frames acquired were analyzed separately to calculate the
correlation coefficient at the specified angle. Cross-
correlation analysis using a window size of 3 mm and 75%
overlap of consecutive windows was used to generate the
normalized cross-correlation function. The correlation coef-
ficient is obtained from the peak of the normalized cross-
correlation function.

B. Computation of the effective aperture

The actual aperture of the transducer during RF data
acquisition was not available during the experiment. There-
fore, we calculated the correlation between two parallel RF
echo signal segments for the zero-angle frame to estimate the
PSF of the system, which in turn would yield an effective
aperture estimate.36 We selected a 4 mm RF segment cen-
tered at a depth of 3 cm for each beam line and calculated
the correlation coefficient value versus the beam line separa-
tion as shown in Fig. 4. The error bars denote the standard
deviation of the mean estimates over 20 different lateral po-
sitions. Since the transmit focus is set to a depth of 1.0 cm
with a dynamic receive focus, the transmit PSF at a 3-cm
depth is significantly wider than the receive PSF. The com-
bined PSF, a product of transmit and receive PSF, can be
approximated by the receive PSF, which can be written as
J. Acoust. Soc. Am., Vol. 119, No. 6, June 2006 M. Rao and
px�x� = sin��f0x�/��f0x� . �22�

Note the difference between Eqs. �22� and �8�, where we
assume that the transmit and receive foci are located at the
same position as the origin of the echo signal; therefore, the
PSF in that case would be the product of two identical sinc
functions.

We use the method described by Chen et al.36 to com-
pute the correlation between two parallel beam lines and to
determine the effective aperture. We estimated that for an
effective receive aperture size of D=8 mm, the theoretical
prediction fits the experimental data �Fig. 4�, where the best
fit curve is plotted as a dashed line. With this effective aper-
ture size, we can predict the decorrelation of the pre- and
post-compression RF signal segments with an increase of
beam angle, and compare the theoretical predictions with the
experimental data.

IV. RESULTS

To verify the accuracy of the proposed theory, we use
experimental RF data to compute estimates of the correlation
coefficient and to compare these results to the theoretical
prediction. We selected a location in the phantom at a depth
of 3 cm along the central beam line for a 0 deg insonification
angle. For each subsequent insonification angle, we then lo-
cate the beam line that intersects or passes closest to that
point and chose the RF data segment centered at that point. A
rectangular window was used to segment or gate the RF data.

FIG. 5. Comparison between theoreti-
cal prediction and experimental results
for the correlation coefficient of pre-
and post-compression RF segments
acquired at different beam angles. Re-
sults are shown for applied strains of
�a� 1%, and �b� 2%. The correlation
coefficient was obtained for a 5 MHz
center frequency, using a 3-mm RF
data segment centered at a depth of
3 cm.

FIG. 4. Correlation coefficient for echo data obtained from parallel RF beam
lines. The solid line is the measured correlation coefficient estimate and the
dashed curve denotes the approximated theoretical curve generated by as-
suming a transducer aperture size of 8 mm.
T. Varghese: Correlation angle dependence for elastography 4097



Since the window length was selected to be 3 mm and signal
intensity variations due to attenuation and focusing effects
are ignored, the window function w�t� can be set to 1. The
resultant correlation coefficient curves are plotted as a func-
tion of the beam angle in Fig. 5 for applied compressions of
�a� 1% and �b� 2%. The error bars denote the standard de-
viation of the mean estimates over ten independent data sets.
The theoretical prediction, obtained by numerically calculat-
ing Eq. �14�, is plotted as a dashed line. Note that the theo-
retical curve is just above the errorbars of the experimental
curve in most beam angle cases. This is because our theoret-
ical model assumes that the displacement along the beam
direction has been accurately tracked, in which case the cor-
relation coefficient achieves the maximum value at that beam
angle. The experimental estimates of the displacement, how-
ever, always contain errors due to the motion tracking algo-
rithm and sampling precision. Therefore, the correlation co-
efficient obtained from experiment is lower than the
theoretical prediction.
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The reduction in the correlation coefficient with beam
angle manifests as increased decorrelation errors leading to
noisy estimation of the displacement and subsequently the
local strain in the angular strain images. Examples of angular
strain images obtained from the uniformly elastic phantom
are shown in Fig. 6, for angles of 0°, 4.5°, 10.5°, and 15°.
Note the presence of increased noise artifacts in the strain
images with an increase in the insonification or beam angle.

V. DISCUSSION

Spatial-angular compounding can reduce noise artifacts
in elastograms, but at the expense of the additional process-
ing time required for displacement and strain estimations
along angular directions. The most efficient spatial com-
pounding procedure would be obtained by averaging inde-
pendent, uncorrelated angular elastograms or strain
estimates.33 The effective number of independent strain esti-
mates obtained depends on two factors: the angular incre-

FIG. 7. Plots of the theoretical predic-
tion of the correlation coefficient ver-
sus the beam angle for different ap-
plied strain and RF data segment
lengths of �a� 3 mm and �b� 10 mm.
The RF data segment was centered at
a 3-cm depth.

FIG. 6. Angular strain images ob-
tained at �a� 0°, �b� 4.5°, �c� 10.5°, and
�d� 15° angles under an applied strain
of 1.5%. The colorbar denotes strain,
where 1% strain is displayed as 0.01.
ao and T. Varghese: Correlation angle dependence for elastography



ment and the maximum angle used for angular compound-
ing. Generally, increasing the maximum angle for
compounding reduces the strain variance and improves the
SNRe. However, increased decorrelation noise artifacts are
present for the elastograms obtained over larger insonifica-
tion angles as illustrated in this paper. It is useful to under-
stand how the beam angle and other system factors affect the
correlation between pre- and post-compression signals.

Figure 7 shows approximated theoretical correlation co-
efficient curves as a function of beam angle using RF data
segment lengths of �a� 3 mm, and �b� 10 mm, for applied
strain values of 0.5, 1, 2, and 3 %, respectively. Here the RF
data segment was assumed to be centered at a 3-cm depth in
the phantom, and the aperture of the transducer was com-
puted to be 1.5 cm. As illustrated in the figure, the decorre-
lation rate of the RF signal pairs increase with the value of
the applied strain. This increased decorrelation rate is due to
the fact that with increased strain more scatterers would
leave the beam, leading to increased decorrelation, especially
at the larger beam angles. Note that this is also the reason
that the applied strain has a smaller effect on the correlation
coefficient at smaller beam angles, as shown in Fig. 7. Varia-
tions in the correlation coefficient for different gated RF sig-
nal segment lengths are also observed in Figs. 7�a� and 7�b�.
As expected, when echo signals that are further away from
the center of the initial data segment are included within the
gated segment, increased signal decorrelation occurs be-
tween the pre- and post-compression signals. This effect is
more pronounced for the smaller beam angles and reduces
with an increase in the beam angle. This is due to the fact
that at the larger beam angles the major contribution to the
signal decorrelation comes from the scatterers moving out of
beam and the effect of the data segment length alone appears
to be negligible.

Figure 8 shows the theoretical prediction for the corre-
lation coefficient curves for RF signals obtained at different
depths. Results are shown for applied strains of �a� 1%, and
�b� 2%. A 3-mm RF segment length was used in the calcu-
lation, and the aperture of the transducer was dynamically
changed to enable the beam to be focused at the different
depths. As expected, deeper segments of RF signals decorre-
late more rapidly with corresponding increases in the beam
angle. This result is explained by the geometric location of
the scatterers and beam lines before and after compression,
illustrated in Fig. 1. Considering the scatterers that contribute

to the �-angled RF segment centered at point O1, after com-
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pression, these scatterers move to the locations centered at
point O1�, which is essentially outside the beamwidth, leading
to signal decorrelation. The distance that the scatterers move
increases with both the depth and the applied strain. There-
fore, the correlation coefficient decreases at a faster rate at
deeper locations with larger applied strains. Note that an in-
creased depth does not have an appreciable impact on signal
decorrelation at the 0-deg beam angle since the scatterers
remain within the beam as they are displaced or deformed
along the axial direction.

Figure 9 shows plots of the correlation coefficient versus
the beam angle for different insonification frequencies. Re-
sults are obtained using 3-mm RF segments centered at a
depth of 3 cm for 1% applied strain. As illustrated in the
figure, the signal decorrelation rate of RF signal pairs in-
creases with the center frequency. This is primarily due to
the fact that the ultrasound beam becomes narrower with the
increased center frequency, enabling scatterers that were
within the precompression beam to leave the beam and
newer scatterers to come within the beam after compression
when the beam becomes narrower, especially at larger beam
angles. A similar increase in the decorrelation rate is ob-
served when the aperture of the transducer is changed to
obtain a narrower beam. Figure 10 plots the correlation co-
efficient curves for different transducer apertures for a
5 MHz center or insonification frequency. A 3-mm RF data
segment centered at a 3-cm depth with 1% applied strain, is

FIG. 8. Plots of the theoretical predic-
tion of the correlation coefficient ver-
sus the beam angle for RF data seg-
ments obtained at different depths.
Results are shown for applied strains
of �a� 1%, and �b� 2%. A 3-mm RF
segment length is used in the calcula-
tion.

FIG. 9. Plots of the theoretical prediction of the correlation coefficient ver-
sus the beam angle for different center frequencies. Results are obtained
using 3-mm RF segments centered at a depth of 3 cm for 1% applied strain,

and a transducer aperture of 1.5 cm.
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utilized for Fig. 10. For larger apertures, the correlation co-
efficient curve falls off quickly with beam angle due to the
narrower beam.

VI. CONCLUSIONS

A theoretical expression has been derived for the signal
decorrelation between pre- and post-compression RF echo
signals obtained at different angular insonifications, using
beam steering to obtain angular elastograms. This work is
based on previous theoretical results presented by Chen
et al.,36 where the analysis of the correlation between RF
signals acquired from the same location but at different
angles were presented. The analysis is extended to study the
correlation between pre- and post-compression RF signals at
a specified beam angle. The theoretical prediction matches
well with the experimental results obtained using beam steer-
ing on a linear array transducer. The theoretical results de-
rived in this paper is useful for evaluating the strain estima-
tion performance of angular compounding and shear strain
estimation using angular RF data22,24 in elastography. For
angular compounding and shear strain imaging, the theoret-
ical results would enable the estimation of optimal maximum
insonification angle to streamline the data processing. To find
the optimum angular increment, more work is required to
analyze the correlation between the angular elastograms ob-
tained at different angles.
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