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An ultrasonic backscattered signal from material comprised of quasiperiodic scatterers exhibit 
redundancy over both its phase and magnitude spectra. This paper addresses the problem of 
estimating mean-scatterer spacing from the backscattered ultrasound signal using spectral 
redundancy characterized by the spectral autocorrelation (SAC) function. Mean-scatterer spacing 
estimates are compared for techniques that use the cepstmm and the SAC function. A-scan models 
consist of a collection of regular scatterers with Gamma distributed spacings embedded in diffuse 
scatterers with uniform distributed spacings. The model accounts for attenuation by convolving the 
frequency dependent scattering centers with a time-varying system response. Simulation results 
indicate that SAC-based estimates converge more reliably over smaller amounts of data than 
cepstrum-based estimates. A major reason for the performance advantage is the use of phase 
information by the SAC function, while the cepstrum uses a phaseless power spectral density that 
is directly affected by the system response and the presence of diffuse scattering (speckle). An 
example of estimating the mean-scatterer spacing in liver tissue also is presented. 

PACS numbers: 43.60.Cg, 43.80.Cs 

INTRODUCTION 

Ultrasonic backscattered signals from biological tissue 
contain information regarding resolvable scatterer structures. 
The information, however, is corrupted by echoes from dif- 
fuse (unresolvable) scatterers. • This paper examines charac- 
terizing tissue microstructure variations with the spectral cor- 
relation components of the backscattered signal. The spectral 
autocorrelation (SAC) function provides an estimate of the 
mean-scatterer spacing that uses phase information to reduce 
the degradation caused by the system effects and the pres- 
ence of diffuse scatterers. 2-7 It has been shown that increas- 

ing regularity of the scatterer spacing gives rise to well- 
defined local maxima among the correlation components in 
the SAC function. 4'5 This paper demonstrates superior per- 
formance for spectral correlation methods over methods that 
simply use the power spectral density (PSD). 

The mean-scatterer spacing parameter has been pro- 
posed for tissue characterization. Fellingham and Sommer 8 
used mean-scatterer spacing to differentiate between normal 
and cirrhotic liver. Their algorithm was based on the detec- 
tion of spectral peaks in the PSD. The cepstrum was initially 
used for tissue characterization by Kuc 9 in order to reduce 
the system effects in the PSD. Performance comparisons be- 
tween cepstral methods for detecting the mean scatterer 
spacing m showed that the AR model performs better than 
FI•T methods for smaller gate lengths. Wagner et al. n'•2 pro- 
posed the use of three scatterer features to classify tissue 
architecture: the mean-scatterer spacing, the ratio of specular 
to diffuse scatterer intensities, and the fractional standard 
deviation in the specular scatterers. Intensity (squared enve- 
lope) images were used to estimate the individual contribu- 
tions of diffuse and regular scattering to the overall intensity. 
The scatterer spacing was estimated from the power spec- 
trum of the intensity by a weighted thresholding procedure. 

This work models soft tissue as an acoustic medium 

containing two types of scatterers. The first component is the 
diffuse scatterers, which are uniformly distributed through- 
out the tissue and are of a sufficient number to generate an 
echo signal with circular Gaussian statistics. TM The second 
class of scatterers have regularity associated with them and 
contribute to the specular echoes in the backscattered ultra- 
sound signal. This paper models the spacings between these 
regular scatterers with a Gamma distribution. The Gamma 
distribution provides a flexible method for simulating para- 
metric regularity in the scatterer spacing. Landini and 
Verrazini •3 demonstrated that both average interval spacing 
and the variance of the spacing could be parametrically de- 
scribed using a Gamma distribution. The mean and variance 
of the scatterer spacings were estimated from the periodicity 
and attenuation of the cepstral peaks. The aim of this paper is 
to demonstrate the advantages of using spectral redundancy 
in estimating the mean-scatterer spacing. This paper com- 
pares the estimation performance enhancement attained us- 
ing a spectral redundancy technique (SAC), relative to a cep- 
stral analysis technique using the PSD. m 

A brief description of the mean-scatterer spacing estima- 
tors are discussed in Sec. I. Section II discusses the simula- 

tion experiment and analyzes the relative merits of the tech- 
niques used in determining the scatterer spacing. Application 
of these methods to in vivo data from liver tissue is discussed 

in Sec. IV. Finally, Sec. V summarizes the significance of the 
results obtained to tissue characterization using ultrasound. 

I. THEORY 

The tissue model consists of a sparse collection of ran- 
domly distributed, weak scattering particles that interact with 
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the incident pulse only once (multiple scattering is assumed 
to be negligible). The tissue scatterers within the ultrasonic 
beam field can be written as 

x(t)= • a•(t-•,,)+ •] v,,(t-O.). 
n=l n=l 

(1) 

window, and J represents the amount of overlap between the 
uth and u+lth tapered data segment (i.e., (l-l/J)X100 is 
the percent overlap between segments for l<-•-J<oo). Let N• 
and N o denote the number of regular and diffuse scatterers 
that contribute to the A-scan segment over the interval T. 
The Fourier transform of Eq. (3) with respect to r, at a given 
time t, can be written as 

where t is a time axis (related to the distartce by the velocity 
of the pulse), No is the total number of diffuse scatterers, u, 
denotes the reflectivity of the nth diffuse scatterer, 0,• repre- 
sents the delay associated with the nth diffJse scattering cen- 
ter, N s is the total number of regular scatterers, a, denotes 
the reflectivity of the nth regular scatterer. and r, represents 
the delay associated with the nth regular scattering center. 

The attenuation of the propagating ul'.rasound pulse de- 
pends on the scattering and absorption properties of the tis- 
sue. The impulse response due to the system and propagation 
path (to and from the scatterer field), is represented by a time 
varying system response function h(t,r). The impulse re- 
sponse changes with time due to the frequency dependent 
attenuation of the pulse as it propagates through the tissue. 
The A-scan corresponding to the scattere] field can now be 
written as 

(Ns y(t)=• h(t,r) • a,(r-r,) 

+ • v.(T- 0•) clr, (2) 

where •, the variable of integration, represents the system 
response axis at a given time t. 

For nonstationary signal analysis, the periodogram and 
the SAC functions are computed over small windowed seg- 
ments of the A-scan with a data tapering Welch window, 
using the Welch-Bartlett technique. is Detectability of the 
mean-scatterer spacing requires the presence of at least two 
regular scatterers within the window (i.e., T>A, where A is 
the mean-regular scatterer spacing and T is the window 
length). Adjacent overlapping data segmmts are averaged 
(Welch-Bartlett technique •8) to obtain the PSD and SAC 
function estimates from the A scan. A single windowed seg- 
ment is denoted by 

= y r-t+uy wr(r), -•'•<r•<:• -, (3) 
0, elsewhere 

where Yr(') represents a tapered data se,;ment centered at 
t-uTIJ of finite duration T, wt(-) represents the tapered 

Yr f;t-u =H(f;t) • A,(f )e 

+ • V.(f )e 
n=l 

(4) 

where f is frequency, H(f ) and Y(f ) are the Fourier trans- 
forms of h(r) and y(r), respectively, and A•(f ) and V•(f ) 
denote the frequency dependent scattering strength of scat- 
terer a,(r) and v•(r), respectively. 

A. The spectral autocorrelation function 

The phase and magnitude spectrum of backscattered en- 
ergy from regularly spaced scatterers contains information 
related to the spacing mean and variance. While the PSD can 
be used to characterize the scatterer spacing, it relies only on 
the magnitude spectrum, which is directly affected by the 
system response and diffuse scattered energy. The SAC funi:- 
tion, however, uses information in the phase spectrum, which 
results in local maxima in the bifrequency plane where the 
mean contributions of the diffuse scatterer energy is zero 
(this is not the case for the PSD). As a result, the SAC func- 
tion provides a more robust estimate than the PSD for scat- 
terer spacing in the presence of diffuse scattering. These 
points are illustrated in this section by defining the SAC 
function and deriving a relationship between the regular and 
diffuse scatterer distributions and local maxima in the SAC 

function. 

The SAC function 2 is defined over a bJfrequency plane 
by 

Sr(f•,f2;t) =E[Yr(f• ;t)¾•(f2;t)] 

L+I Yr fi;t-u 
u -L2 

where Yr(') is the Fourier transform of the windowed 
A-scan segment, and Y•-( ß ) is its complex conjugate. The 
approximation to the expected value is denoted by the aver- 
age of L +1 local segments. The relationship between the 
SAC function and the scatterer configurations is seen by sub- 
stituting in Yr(') from Eq. (4), and assuming the attenuation 
of the pulse over the region of interest, defined by t and L is 
negligible 
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[ N; 
Sr(f•,f2;t)=H(f•;t)H*(f2;t)XE[ • • An(fOA•*(f2)e -j2•rff•n-f2r=)+ • • An(f•)Vm*(f2) e-j2•r(lh•n-f2ø=) 

[n=l ra=l n=l ra=l 

N D N S N D N D 

n=l m=l n=l ra=l 

Vn(f l ) Vm* (f 2)e- J2*r(11On- f 20m ) (6) 

Under the assumption that the diffuse scatterer sizes and 
positions are uncorrelated with the regular scatterers, the ex- 
pected value of the summation cross-product terms between 
the diffuse and regular scatterers in Eq. (6) reduces to zero 

Sr(fl,f2;t) 

The ith scatterer position is represented by i equal intervals 
from the beginning of the segment. This change of variables 
gives a good approximation to the actual spacing when the 
scatterer spacing variance is small. For the extreme case 
where the scatterer spacing is constant, A i = A, Eq. (8) can be 
expressed as: 

-- H(f, ;t)H* (f2 ;t) 

X E • A•(fl)A•*(f2)e -12•(f•-f:•) 
n=l m=l 

n=l m=l 

V•(f•) Vm* (f2)e -j2 •r(1, 0n-I20,.) (7) 

Since the diffuse scatterer sizes and positions are uncor- 
related with each other, cross-scatterer terms in the second 
summation term become zero {i.e., g[v•(fOVm*(f2) 
X e-J2•r(1•ø•-12ø'"))=O, tn-•n]. In addition, if the diffuse 
scatterer process is wide-sense stationary over the region of 
interest, the terms where f•f2 are also uncorrelated? 
Thus, Eq. (7) can be rewritten as 

Sr(f•,f2;t) 

=H(f • ;t)H*(f 2 ;t) 

E[•=i • A,(fl)A•*(f2)e -'2'•(f'•-f2•) m=l 

E[ V,(f,) V•* (f2)16(L - f2) (8) 

Since the frequency components of the diffuse scatterer 
echo signal are uncorrelated, they contribute only to the di- 
agonal of the SAC function, which is the PSD of the diffuse 
component. Thus, the expected value of the diffuse scatterer 
components do not contribute to the off-diagonal compo- 
nents of the SAC function. 

To create a variable related to the scatterer spacing, the 
following substitution is made 

ST(fl,f2;t) 

=H(f i ;t)H*(f • ;t) 

E Z An(fl)Am*(f2) e-j2*ra(fln-f2m) 
ra=l 

+ • E[Vn(f,)Vn*(f2)]B(f•-f2) ß 
n=l 

(10) 

The regular scatterer summation in Eq. (10) indicates 
when f•n-f2rn equals integer multiples of 1/A for all tn and 
n, the individual terms in the summation are in phase and 
local maxima occur at these points. The maxima occur both 
along the PSD axis, where f• =f2 = k/A, and throughout the 
rest of the SAC function, where f•-f2=k/A (for k 
=+-1,2,3;...). When the regular scatterer spacings are ran- 
domly (Gamma) distributed, similar local maxima occur. 
These maxima, however, are less pronounced for greater 
variance in the scatterer spacings. 6 

In the cepstral approach for estimating mean-scatterer 
spacing, the system effect is reduced from the scatterer com- 
ponent by taking the logarithm of Eq. (10) (to change mul- 
tiplicative relationships to additive), and then applying high- 
pass filtering? The diffuse component, however, is not 
separated from the regular component in this process, since 
they remain together in the argument of the logarithm term. 
On the other hand, the spectral region of the SAC function 
where f• v• f2 contains no contribution from the diffuse scat- 
terers. Therefore, when the SAC function is computed from 
the data, the off-diagonal terms result in higher regular-to- 
diffuse scatterer signal ratio than the diagonal terms (PSD 
components) after sufficient averaging. 

A normalization for the SAC function provides a way of 
minimizing the amplitude variations due the system and 
propagation effects. The normalization is given by 

•'t 

A•= w-. (9) P(f• ,f2)= S(L ,f2)/x/S(f• ,f•)S(f2,f2), (11) l 
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where P(fl ,f2) denotes the correlation coefficient. Note the 
resulting diagonal of the normalized SAC function is unity. 
Thus, all the information regarding scatten:r spacing is in the 
off-diagonal components of the normalized SAC function, 
and amplitude variations in the spectrum due to systems ef- 
fects are eliminated. 

Normalization was not used previously by Varghese and 
Donohue, 4 where the smallest scatterer spacing was deter- 
mined graphically by the spectral correlation peak farthest 
away from the PSD diagonal. In the case of very regular 
tissue other spectral peaks occur closer to the PSD diagonal 
that correspond to larger scatterer spacing'a harmonically re- 
lated to the smaller spacing. Due to the amplitude variation 
in the spectrum from the system response, spectral correla- 
tion peaks closer to the PSD diagonal have larger magnitudes 
as a result of their corresponding spectral zomponents being 
closer to the center of the system bandwidth. Since the nor- 
malization used in Eq. (11) divides the spectral correlation 
peak magnitude by the square root of the product of the 
magnitudes of its corresponding components along the PSD, 
the magnitude variations from the system are effectively re- 
moved, and correlation peaks which remain are due to the 
coherence in the phase information. 

It should be noted that the magnitude: variations in the 
PSD diagonal due to the scatter spacings are also eliminated 
by this normalization. The phase information, however, is 
sufficient to generate local maxima in the bifrequency plane 
for detecting the scatterer spacing. Thus, normalization of the 
SAC function allows for consistent detections of the spectral 
correlation peak location irrespective of the distance from the 
PSD. A simple numerical algorithm can be used to detect the 
maximum peak in the off-diagonal components (i.e., visual 
inspection of the SAC function is not necessary). 

Since normalization is performed in the frequency do- 
main and the system is band limited, useful information 
about the scatterer spacing is determined by the pulse width. 
To avoid amplifying low signal-to-noise (SNR) spectral re- 
gions, normalization is performed only in the region where 
significant energy is present in the PSD (typically the 3-6 
dB region of the received signal spectrum). Spurious peaks 
will occur if low SNR regions are included in the normaliza- 
tion window (i.e., usually below the 10-dE bandwidth of the 
received pulse). These peaks will result in scatterer spacings 
being detected near or beyond the resolution limit of the 
system when no regular scatterer spacing is present in the 
tissue. 

B. The power spectrum 

Classical methods of estimating the power spectrum are 
based on the periodogram. The PSD is defined by 

P•(f )=E[IYr(f;t)l 2] 

--L+I •" Yr f;t-u • , (12) 
u=-L 2 

where L + 1 is the number of segments ax eraged. The rela- 

tionship between the PSD and the scatterers is obtained from 
Eq. (8) by substituting f• =f2=f, to obtain 

Pr(f ) = H(I; t)H* (f;t) 

x e •, A•(f)A•*(f)e 

+ e[v(l )v2(I )] . .3) 

Using the change of variables in Eq. (9), with a constant 
scatterer spacing Ai=A, Eq. (13) reduces to 

Pr(f )=H([;t)H*(f;t) 

x e )e 

+ )] . 04) 

We can see f[om Eq. (14), for the regular scatterers, that 
iff is a multiple of l/A, all the summation te•s are in ph•e 
and local maxima occur in the PSD. These periodic peaks in 
the PSD have been used directly for dete•ining the average 
scatterer spacing in very regular tissue. 8-m'13 

C. The cepstrum 

Periodicity in the PSD produces a dominant peak in the 
cepstrum, which is used to determine the scatterer spacing. 
The cepstrum is the most commonly used method to detect 
the scatterer spacing. The cepslrum is defined as the Fourier 
transform of the logarithm of the PSD. The logarithm of Eq. 
(14) results in 

log PT(f ) = 1og[H(f;t)H*(f;t)] 

+log E •] •] An( f )A•*(f )e j2•a/(n-m) 
rt=l m--I 

+ E[V.(f )V2(f)] . (15) 

•pstral processing assumes slow variations for the sys- 
tem response [first log te• in Eq. (15)] with respea to the 
variations in the regular scatterer spacing [second log te• in 
Eq. (15)]. As a result, the log of the system response is re- 
duced (using a high-pass filter) and the inverse Fourier trans- 
form is taken. The scatterer spacing periodicity now m•i- 
rests itself as pea• at integer multiples of •, with the 
dominant peak at 5. The dominant peak is used to determine 
the mean-scatterer spacing in tissue. lø Obse•e also from Eq. 
(15) that the PSD resulting from the diffuse scatterers adds 
directly to the regular scatterer component within the argu- 
ment of the logarithm. As a result, simple spectral filtering 
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will not directly reduce this degradation of the cepstrum for 
regular scatterers. 

The mean-scatterer spacing is computed from the loca- 
tion (At) of the dominant peak in the cepstrum estimated 
from the PSD. For the SAC function, the location of the 
dominant peak among the off-diagonal spectral components 
at (f•,f2), corresponds to a frequency difference 
(Af=f•-f2) that is used to compute the mean scatterer 
spacing 

V 1 

d= 2A-• = 5 VAt, (16) 
where V denotes the velocity of propagation of the ultra- 
sound pulse. 

The finite bandwidth, of the interrogating pulse imposes 
limitations on the average scatterer spacing which can be 
resolved by the imaging system. The mean-scatterer spacing 
is resolved, if the correlation length of the system impulse 
response is shorter than the spacing between the individual 
scatterers. For scatterers not resolved by the system, local 
maxima corresponding to scatterer spacing is not observed. 
Simulation results for the case of unresolvable scatterers 

have shown relationships between the average spectral cor- 
relation (average of all correlation term magnitudes in off- 
diagonal region) and the unresolvable scatterer density. 22 
When no regularity is present in scatterers, the dominant 
peak tends to occur near the first off-diagonal (due to leakage 
from the PSD). 

This section presented different methods used to detect 
the scatterer spacing. Cepstral techniques require high-pass 
filtering to reduce the system effect from the tissue signature, 
which involves setting a cutoff frequency for the filter. The 
cutoff frequency can be set to pass the minimum detectable 
scatterer spacing (i.e., on the order of the pulse width) or 
higher, if the range of scatterer spacing of interest is known. 
The SAC function does not require high-pass filtering, how- 
ever, a frequency window must be applied before normaliza- 
tion to ensure information is taken only from the spectral 
region of the imaging system. The estimation technique us- 
ing the SAC function detects the location of the dominant 
off-diagonal component, and uses this information to com- 
pute the scatterer spacing. Simulation results presented in the 
next section show the performance improvement obtained 
using the SAC function to detect periodicities in the presence 
of diffuse backscatter and varying regularity in the regular 
scatterers. 

II. SIMULATION 

A-scans with known tissue and signal parameters are 
simulated using Eqs. (2) and (4). The simulator parameters 
were chosen within the range of values reported in literature 
from experimental research with different types of tissue in 
vitro? -•7 The size of the quasiperiodic (regular) scatterers 
was constant for all the simulations. Scatterer sizes influence 

the frequency dependence of the pulse scattering and attenu- 
ation for the propagating ultrasonic pulse. The scatterer size 
for the regular component of the scattering was chosen as 80 
ttm. The Gamma function was used to describe the scatterer 

distribution for regular scattering. Scatterer spacings were 
simulated from cases with a very irregular spacing (large 
standard deviation), to cases with almost deterministic spac- 
ings (corresponding to Gamma orders from 50-1000, re- 
spectively). The diffuse component was modeled using a uni- 
form distribution for scatterers (size 10 /zm) with the 
scatterer density chosen to simulate Gaussian statistics for 
the scatterer number (about 15-20 scatterers per resolution 
cell using a Poisson distribution). The absorption coefficient 
was chosen as 0.94-dB cm -] (corresponds to measured val- 
ues for liver tissue) and a diffuse-differential scattering coef- 
ficient of 9X 10 -4 cm -1 sr -1 for backscattering at an angle of 
180 ø, measured at 3 MHz? 

The pulse parameters are used to obtain the initial sys- 
tem response h(t) which is modified as the pulse propagates 
through the microstructure due to the frequency dependent 
attenuation. The interrogating pulse was simulated with a 
center frequency of 3.5 MHz and a Gaussian shaped enve- 
lope. The propagation velocity of the pulse through biologi- 
cal tissue was set at 1540 m/s. The bandwidth of the pulse 
should be at least I/A, in order to observe spectral peaks due 
to the distribution of the scatterers in the microstructure. The 

simulated pulse had a 3-dB bandwidth of 1.9 MHz, which 
limited the minimum detectable scatterer spacing to 0.41 
mm. 

The regular scattering component was simulated with a 
scatterer spacing of 0.51 mm. A gate length (T) of 4 mm or 
128 data points was used to form the PSD and the SAC 
function estimates. The mean-scatterer spacing was esti- 
mated from the FFF cepstrum. The cepstrum was filtered 
using a high-pass filter with cutoff frequency 1.5 MHz to 
reduce system effects. The scatterer spacing was also esti- 
mated from the location of the largest off-diagonal peak of 
the SAC function. The simulation was performed for regular 
scatterers with different spacing variances and different 
strengths of the diffuse component. 

When estimating the SAC function, with a hopping win- 
dow, a phase correction factor is helpful for correcting the 
phase difference between regular scatterer positions and the 
center of the window. For regularly spaced scatterers the 
relative phase difference between the center of the window 
and the scatterer location degrade the coherent sums in the 
off-diagonal regions of the SAC function. When consecutive 
SAC functions are averaged, the phase difference between 
the center of the window and the scatterer location impedes 
the convergence of the SAC function. This error makes a 
significant difference when only a few regular scatterers exist 
over the data segment window. When the regular scatterers 
are more dense within the processing window, the phase dif- 
ference between a regular scatterer and the center of the win- 
dow is small, and therefore does not significantly hinder the 
convergence. 

The phase correction factor for each tapered data seg- 
ment aligns the regular scatterers with the center of the win- 
dow. The proper phase shift is determined by the distance of 
any regular scatterer location to the center of the window. 
With the phase correction factor included, Eq. (14) can be 
written as 
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FIG. 1. Spectral autocorrelation function, and FFT cepstrum for scatterers with a 0.51 ram-mean-scatterer ,;pacing with tr=3.15%. (a) Only regular scatterers, 
(b) with a +3-dB-diffuse component relative to the regular scatterers. 

pr( f;t_u •_) = yT( f;t_u •_)eJ2nœ(rt• ' T2), (17) 
where r•s represents the location of any regular scatterer, 
and PrO) is the phase corrected Fourier transform of the 
windowed A-scan segment (for practical application the 
maximum value within a data segment is assumed to be the 
location of a regular scatterer, which is used to obtain 
The linear phase correction hctor does not affect the location 
of the off-diagonal peaks, it merely aligns the window with 
the scatterer structure, and helps in the coherent phase addi- 
tion during the averaging of consecutive overlapped SAC 
functions. The phase corrected SAC function using Eqs. (17) 
and (10) can be written as 

Sr(f•,f2;t)-L + 1 • Pr fl;t-u 
u=-L 2 

(18) 

Sample plots of the unnormalized SAC function and the 
cepstrum are presented in Fig. 1 for regular scatterers with 
cr=3.15% (standard deviation relative to the mean-scatterer 
spacing). Figure 1 (a) shows a contour plot of the SAC func- 
tion and the cepstrum for regular scatterers only, while Fig. 
l(b) shows the effect of +3 dB of the diffuse component in 
addition to the regular scatterers. The contour plots are 
thresholded to emphasize the local maxima. The light inten- 
sity regions are those that exceeded the threshold to indicate 
a local maxima. The 0.51-mm-regular scatterer spacing is 
easily identified in the cepstrum Fig. l(a) and (b). Note the 
presence of a periodicity at 1 mm, which is harmonically 
related to the 0.5-mm scatterer spacing. The diffuse compo- 
nent directly adds to the PSD, as was discussed in Eq. (15), 
and causes a broadening of the cepstral peaks, and an in- 
crease in the number of spurious peaks as seen in Fig. 1 (b). 
For the SAC function the mean-scatterer spacing is estimated 
from the location of the off-diagonal peak at (7.75, 6.24) 
MHz, which corresponds to Af=l.51 MHz. Substitute this 
value into Eq. (16) to obtain a scatterer spacing of 0.51 mm. 
The spectral correlation peak for the SAC function with the 
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FIG. 2. Mean-scatterer spacing and the coefficient of variation for regular scatterers with spacing 0.51 mm. (a) Standard deviation 0.016 mm (3.15%), (b) 
standard deviation 0.051 ram (9.99%), (c) standard deviation 0.072 mm (14.14%). 

diffuse component is at (4.9, 6.4) MHz, which corresponds 
to A f= 1.50 MHz, giving a scatterer spacing of 0.51 mm. 

Monte Carlo simulations were used to compare the per- 
formance between the SAC and FFT cepstrum estimates of 
the mean-scatterer spacing. Convergence plots for the scat- 
terer spacing estimate used 25 independent simulated 
A-scans with the same tissue and signal parameters. The 
A-scans were generated with gamma distributed random 

variables for the regular scatterer spacing. The diffuse scat- 
terers were uniformly distributed throughout the microstruc- 
ture with uniformly distributed scatterer strengths. The PSD 
and the SAC functions were computed using a hopping win- 
dow with 4-mm length, and a 50% (J--2) overlap of the 
tapered data segments along the A-scan. The spectrum at 
each window location was averaged with the previous spec- 
tra to obtain an estimate for the PSD and the SAC function. 
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Both the computed mean scatterer spacing; (d) and the coef- 
ficient of variation (CV) of the spacing estimates are pre- 
sented in Figs. 2 and 3 for increasing standard deviations in 
the regular scatterer spacing distribution. The coefficient of 
variation was computed as the ratio of the standard deviation 
of the estimates to the mean estimate computed over the 
results from the 25 simulated A-scans. 

Figure 2 presents the mean-scatterer spacing and the CV 
for only quasiperiodic scatterers (no diffuse scattering), as a 
function of the number of A-scan segments used. The plots 
show that the estimates obtained using ':he SAC function 
converges faster than the cepstral techniqt•e and has a lower 
CV. In Fig. 2(a) the SAC function meart-scatterer spacing 
estimate (with 0.=3.15%) converges within 6 averages (cor- 
responding to 14.4 mm or nearly four full data segments), 
while the cepstral technique converges in about 14 averages 
with a small bias (i.e., less than 10%). Th.: CV also reduces 
to 0.0% for the SAC function within 6 averages. A major 
source of deterioration in the performance of the cepstral 
technique with no noise, is due to the presence of the har- 
monic at i mm, whose peak dominates for some A scans. 

With an increase in the standard deviation of the regular 
scatterer spacing, the results in Fig. 2(b) and (c) show a 
slower convergence to the m6an-scatterer spacing. In Fig. 
2(b) the SAC function CV is within 5% after 14 averages, for 
d=0.50 mm with 0':=9.99%. In Fig. 2(c) the SAC function 
CV is within 10% with d=0.48 mm for cr=14.14%. In both 

Fig. 2(b) and (c) the CV for the cepstral technique is at about 
40%, with the mean-scatterer spacing ranging from 0.55 to 
0.65 mm. Results in Fig. 2(b) and (c) indicate the SAC func- 
tion estimate is more accurate and reliable than the cepstrum. 

Estimation of the scatterer spacing in the presence of 
strong diffuse scattering is presented in Fig. 3 with the ratio 
of the diffuse to regular scatterer strength :it +3 dB (i.e., +3 
dB of the diffuse component is added to tlhe regular compo- 
nent of the A scan). Figure 3(a) to (c) show the effect of the 
change in the microstructure regularity ia the presence of 
diffuse scattering. The SAC function is able to resolve the 
regular scatterer spacing even in the presence of the diffuse 
component with no significant degradation in performance of 
the SAC function [compare Figs. 2(a) and 3(a)]. In the pres- 
ence of the diffuse component the SAC function estimate 
fluctuates about the true scatterer spacing,, by 0.03 mm for 
0'=9.9%, and by 0.06 mm for 0'=14.14%, with the CV in- 
creasing to 6% and 10%, respectively [coatpare Fig. 2(b) and 
(c) to Fig. 3(b) and (c)]. 

Note the cepstral technique converges to a scatterer 
spacing value close to the cutoff frequency of the high-pass 
filter for regular scatterers with 0' between 9.9% to 14.14%. 
The cepstral estimates converges to this region because of 
the contribution of the spurious peaks at lower frequencies 
and the larger scatterer spacing variance, •vhich reduces the 
cepstral peak corresponding to the regular scatterer spacing 
[observe in Fig. l(b), the presence of strong spurious peaks 
near values below 0.51 mm]. In addition, the diffuse compo- 
nent adds directly to the PSD corresponding to the regular 
scatterer structures and causes a broadening of the cepstral 
peaks along with other effects due to the nonlinear operation 
(logarithm) on the sum of the two components. The CV in 

this case reduces because the spurious peaks near the filter 
cutoff frequency are consistently detected. This is not an in- 
dication of good performance since the estimation is con- 
verging on the incorrect value. The diffuse component thus 
introduces spurious peaks in the cepstrum and reduces the 
contribution of the regular scatterers to the true cepstral peak. 
The cepstral technique in the presence of the diffuse compo- 
nent, converges to the true scatterer spacing only for regular 
scatterers with •r=3.15%. 

Figure 4 illustrates the range and effectiveness of the 
SAC function in estimating the mean-regular scatterer spac- 
ing from 0.5 to 1.35 mm, with a standard deviation of 9.99%, 
and -3 dB of the diffuse component to regular component 
strength. The SAC function converges to the true value of the 
mean-scatterer spacings for all the spacings in Fig. 4, with 
the estimates converging slower as the correlation peaks 
form closer to the PSD. The slower convergence for larger 
scatterer spacings results from greater errors in the phase 
correction factors. Since noise is included in these scans, the 
maximum value in a given window will sometimes be a peak 
from the diffuse scatterers, and as mentioned previously, this 
error more significantly affects the cases when only a few 
scatterers are in the processing window. The CV for the SAC 
function estimates remains within 5%-10% for all the cases 

shown, while the cepstral estimates have a CV>40%. These 
results along with the results in Fig. 3, show the dependence 
of the cepstral techniques on the high-pass filter cutoff fre- 
quency. 

This section illustrates the estimation of the regular scat- 
terer spacing in the presence of the diffuse component and 
variation in the regularity of the scatterer distribution. The 
SAC function estimates perform better than the cepstral es- 
timates in the presence of the diffuse scattering component. 
The SAC function includes phase differences between the 
different spectral components, which in the presence of co- 
herent scatterers produces well-defined spectral correlation 
peaks. The spectral correlation peaks are relatively insensi- 
tive to the diffuse components since these scatterers have a 
random phase distribution and their contributions average 
out. Cepstral techniques, on the other hand, do not utilize 
phase information and operate on the PSD characterization 
of the signal, which is directly affected by the diffuse scat- 
tering component. 

III. EXPERIMENTAL RESULTS 

In this section data from in vivo scans of liver tissue are 

used to illustrate the mean-scatterer spacing estimate using 
the SAC function and cepstral analysis. For real tissue the 
SAC function exhibits significant spectral correlation com- 
ponents due to 'the regularity in the tissue structure. B-scan 
images of the liver were obtained using the Ultramark 9 ul- 
trasound system (ATL, Bothell, WA). Liver scans were ob- 
tained using a transducer with a center frequency f•=3.5 
MHz, 3-dB bandwidth f3 •=2.0 MHz, and a sampling fre- 
quency f• = 12 MHz. The received signals were low-pass fil- 
tered (with a cutoff frequency of 6 MHz) before being 
sampled to prevent aliasing. 

The basic functional unit of the liver is the liver 1obule, 
which is a cylindrical structure several mm in length and 
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FIG. 3. Mean-scatterer spacing and the coefficient of variation for regular scatterers with spacing 0.51 mm, and +3 dB of diffuse scattering present. (a) 
Standard deviation 0.016 mm (3.!5%), (b) standard deviation 0.051 mm (9.99%), (c) standard deviation 0.072 mm (14.14%). 

0.8-2 mm in diameter. The human liver contains 50 000- 

100 000 individual 1obules. The lobule is constructed around 

a central vein, and is composed of hepatic plates that radiate 
centrifugally from the central vein-like spokes in a wheel. 
The hepatic plates are separated by hepatic sinusoids which 
link the central vein to the portal venules. Each individual 
lobule is separated by a septa which contains the terminal 
bile ducts, portal venules, and the hepatic arterioles. Each 
hepatic plate is usually two cells thick, with bile canaliculi 

between adjacent cells, which link to the terminal bile 
ducts. 2ø 

The SAC function and the cepstrum were obtained using 
the Welch-Bartlett technique with a 50% overlap of the win- 
dowed axial data segments of duration 10.67/as (128 sample 
points or an 8-mm-data segment)? A set of segments were 
taken from a section of the liver sector scan that corre- 

sponded to a homogeneous appearance in the intensity im- 
age. The dimensions of the section were 16.47 mm in the 
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axial direction and 2.34 ø in the lateral direction (5 adjacent 
A-scans). This tissue section corresponds to an area of ap- 
proximately 1.64 cm axially and 0.6 cm laterally. The SAC 
function and cepstral estimates are presen•:ed in Fig. 5. 

The normalized SAC function and the cepstrum are ob- 
tained by averaging 15 individual SAC functions and perio- 
digrams. The largest spectral correlation l:,eak at (3.18,2.43) 
MHz in Fig. 5(a), corresponds to a scatterer spacing of 1.02 
min. Two other correlation peaks at (3.0,2.7) MHz and 
(3.56,2.9) MHz correspond to scatterer spacings of 2.56 and 

1.16 mm, respectively. The 2.56-mm spacing is harmonically 
related to the 1.02-mm spacing (i.e., periodicity from scatter- 
ers clustered 2 at a time). Although a 2.04-ram spacing is 
expected in this case, there is increased error associated with 
this peak due to an increased (doubled) variance in the spac- 
ing and significance leakage from the PSD values. As a re- 
sult, the peak is not as sharp or as high as the one corre- 
sponding to the fundamental scatterer spacing. The 
correlation peak due to the dominant spacing is about 15.6% 
stronger than the peak due to the spacing of 2.56 mm, and 

3513 J. Acoust. Sec. Am., Vol. 96, No. 6, December 1994 T. Varghese and K. D. Donehue: Mean scatterer spacing estimates 3513 



'1 

.0 2.9 3.8 

Frequency (MHzl 

(a) 

0.07}' 
0.06[ 

o.o{ 
0.02[ 
0'00[ 

0 1 2 • '' 4 
Distance (mm) 

technique is compared to the standard method of using the 
cepstrum to estimate the scatterer spacing. Significant perfor- 
mance improvements are obtained using the SAC function 
when compared to the cepstral technique in the presence of 
the diffuse scattering component. The cepstral technique also 
has the disadvantage of requiring a priori knowledge of the 
cutoff frequency to reduce the system effect from the tissue 
signature. The algorithm using the SAC function does not 
require a high-pass filter. 

The mean-scanerer spacings detected by the SAC func- 
tion is limited by the bandwidth of the pulse and the prox- 
imity of the spectral correlation peaks to the PSD. The tech- 
nique using the SAC function cannot detect spectral peaks 
which are close (larger periodicities) to the main diagonal 
(PSD), since the spectral peak caused by the periodicity 
merges with the PSD due to the leakage from the finite win- 
dow. This problem can be mitigated in the case of the SAC 
function, by using larger gate lengths to detect larger period- 
icities. The SAC function is a robust technique that is rela- 
tively insensitive to presence of diffuse (unresolvable) scat- 
terers and the system effect. Ccpstral methods rely on the 
assumption that the system effect is a slowly varying com- 
ponent and can be reduced by high-pass filtering. However, 
for in vivo analysis a total separation of the system effect 
from the tissue signature will not be obtained because of 
overlying tissue and the weighting from the scatterer position 
within the beam profile. 
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FIG. 5. (a) Spectral autocorrelation function and, (b) FFF cepstrum for liver 
tissue. 

21.4% stronger than the peak due to the 1.16-mm spacing. 
The FFT cepstrum in Fig. 5(b) shows the dominant peak 

due to a scatterer spacing of 1.21 mm, which is about 4.24% 
stronger than the next peak due to a 1.4-mm-scatterer spac- 
ing. Based on the convergence results of the previous sec- 
tion, the SAC function estimate is considered more reliable. 
While both estimates are close to one another, the cepstrum 
has more spurious peaks that compete with the dominate 
peak. 

IV. CONCLUSION 

This paper presented a quantitative method of estimating 
the mean-scatterer spacing using the SAC function. This 
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