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Purpose: Previous publications have reported on the use of one-dimensional cross-correlation anal-
ysis with beam-steered echo signals. However, this approach fails to accurately track displacements
at larger depths (>4.5 cm) due to lower signal-to-noise. In this paper, the authors present the use of
adaptive parallelogram shaped two-dimensional processing blocks for deformation tracking.
Methods: Beam-steered datasets were acquired using a VFX 9L4 linear array transducer operated at
a 6 MHz center frequency for steered angles from −15 to 15◦ in increments of 1◦, on both uniformly
elastic and single-inclusion tissue-mimicking phantoms. Echo signals were acquired to a depth of
65 mm with the focus set at 40 mm corresponding to the center of phantom. Estimated angular
displacements along and perpendicular to the beam direction are used to compute axial and lateral
displacement vectors using a least-squares approach. Normal and shear strain tensor component are
then estimated based on these displacement vectors.
Results: Their results demonstrate that parallelogram shaped two-dimensional deformation tracking
significantly improves spatial resolution (factor of 7.79 along the beam direction), signal-to-noise
(5 dB improvement), and contrast-to-noise (8–14 dB improvement) associated with strain imaging
using beam steering on linear array transducers.
Conclusions: Parallelogram shaped two-dimensional deformation tracking is demonstrated in beam-
steered radiofrequency data, enabling its use in the estimation of normal and shear strain components.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4770272]
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I. INTRODUCTION

Feasibility of utilizing shear strain imaging to classify and
differentiate benign from malignant breast masses based on
their bonding information (lesion mobility) has been shown
in previous in vivo studies.1–4 However, due to the signifi-
cantly lower lateral resolution associated with current clinical
ultrasound systems, when compared to the axial resolution,
most of the studies utilize only the axial-shear strain compo-
nent instead of the full-shear strain component.2, 3 Our previ-
ous comparison study between the axial-shear and full-shear
strain tensor demonstrate that full-shear strain imaging pro-
vides improved accuracy and robust results for breast tumor
classification, especially for asymmetrical positioning of the
mass with respect to the applied deformation.1 Accurate es-
timation of the lateral displacement vector and strain tensor
can help improve the feasibility of utilizing full-shear strain
imaging and thereby improve breast tumor classification.

Spatial resolution describes a system’s ability to distin-
guish between two closely situated objects, and includes both
the axial resolution (along beam direction) and lateral resolu-
tion (perpendicular to beam direction). Previous studies have
demonstrated tradeoffs between the elastographic signal-to-
noise ratio (SNRe), contrast-to-noise ratio (CNRe), and ax-
ial resolution.5–7 In general, larger cross-correlation window
lengths for 1D processing5–7 and kernel dimensions for two-
dimensional (2D) processing may improve SNRe and CNRe

at the cost of the axial resolution.7 The effort on improving

spatial resolution has focused on reduction in the window
lengths for 1D processing5–8 and kernel dimensions for 2D
processing.2, 9 On the other hand, lateral resolution for 1D
processing is primarily affected by the beam width and line
density.10 However, there was no statistically significant re-
lationship associated with lateral resolution and 1D window
length.10 Further study is required to determine the impact of
the lateral extent of the 2D kernel on lateral spatial resolution
with 2D processing.

Different approaches have been developed to improve
lateral displacement estimation as described in previously
published studies.11–25 Methods proposed include use of
the tissue incompressibility assumption,16 interpolation be-
tween radiofrequency (RF) lines19, 20 to improve the line
density, interpolation for cross-correlation displacement
tracking17, 18, 25 to provide subsample estimation of the dis-
placement, multidimensional processing,23, 24 and angular
insonifications.11–15, 21, 26–30

Our group has developed novel approaches that utilize an-
gular displacements estimated from beam-steered RF echo
data pairs to improve accuracy of the estimated lateral
displacement vector.13, 15, 26 Based on the assumption that
noise artifacts are independent and identically distributed,
Techavipoo et al.27, 28 developed a least-squares approach
to estimate both normal and shear strain tensors using RF
data acquired with phased array transducers. Rao et al.12, 29

modified this approach for linear array transducers using 1D
cross-correlation based analysis. In addition, Rao et al.14 also
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implemented an approach using lateral shear deformations.
Quantitative experimental results with spatial angular com-
pounding demonstrate that least-squares compounding pro-
vides significant improvement in the SNRe and CNRe, when
compared to weighted-compounding.11 Chen and Varghese26

extended the least-squares approach by incorporating a cross-
correlation matrix of displacement noise errors into the strain
estimation process thereby avoiding any other assumptions
for simplifying estimation noise. In addition, angular com-
pounding has been used to estimate variations in attenuation
to reduce shadowing of spatially compounded images31 and
for Young’s modulus32 reconstructions.

We have previously demonstrated the presence of decor-
relation noise artifacts associated with 1D cross correlation
based deformation tracking especially at increased depths
in a phantom.1 This is due to the reduced sonographic
SNR associated with echo signals at deeper locations due
to tissue attenuation.33 A more robust deformation tracking
approach is therefore necessary. Hansen et al.21 presented
a approach utilizing 2D block matching based deformation
tracking to estimate axial displacements. However, this ap-
proach utilizes lateral displacement information from only
two beam-steered angles and utilize a geometrical rotational
transformation to register these displacements onto the 0◦

Cartesian spatial grid.15, 27 Azar et al.30 have also demon-
strated the improved performance of 2D tracking using beam
steering for estimating the lateral component of the displace-
ment vector.

In this paper, we present the use of parallelogram shaped
2D processing blocks for deformation tracking that vary with
the beam-steering angle to estimate the 2D angular displace-
ment vector under a quasistatic deformation.34 Orthogonal ax-
ial and lateral components are then estimated from the 2D
angular displacements after a geometrical shear transforma-
tion to first register these displacements onto the 0◦ Cartesian
spatial grid and utilizing a least-squares approach. A gradi-

ent of the axial displacement vector is utilized to estimate
axial strain and axial-shear strain tensors. In a similar man-
ner, the lateral displacement vector is used to estimate the
lateral strain and lateral-shear strain tensors. Full-shear strain
images were then calculated from the axial-shear and lateral-
shear strain tensors. The performance of our 2D deforma-
tion tracking method is compared to previously utilized 1D
deformation tracking method using tissue-mimicking (TM)
phantom experiments. Quantitative experimental results ob-
tained from uniformly elastic TM phantom using 2D defor-
mation tracking demonstrate the significant improvement in
SNRe obtained, compared to 1D tracking. Single ellipsoidal
inclusion TM phantoms also demonstrate the improvements
in CNRe obtained when compared to 1D processing.

II. MATERIALS AND METHODS

II.A. TM phantoms

A uniformly elastic TM phantom with dimensions
(100 × 100 × 100) mm3 was used to compare SNRe im-
provements between 1D and 2D deformation tracking meth-
ods for beam-steered data. In addition, four single-inclusion
TM phantoms were used to evaluate CNRe improvements
for the two deformation tracking approaches. An ellipsoidal
mass with dimensions (19 × 14 × 14) mm3 was embedded
within the center of a uniformly elastic cubical background
with dimensions (80 × 80 × 80) mm3. We have previously
reported on axial- and full-shear strain images obtained with
these phantoms in Ref. 1, where 1D processing was utilized
to generate the full-shear images from beam-steered data.

All the TM phantoms were manufactured in our labora-
tory, and acoustic and elastic properties of phantom materi-
als have been previously described.35, 36 The Young’s modu-
lus values for both background and inclusion materials in the
ellipsoidal phantoms were obtained using dynamic mechani-
cal testing using an EnduraTEC ELF 3220 (Bose Corporation,

TABLE I. Mean and standard deviation of the strain stiffness contrast for the ellipsoidal inclusion TM phantoms for different angular increments for the 1D and
2D deformation tracking approaches.

Angular increments

Phantom Modulus contrast Method 1◦ 3◦ 5◦ 15◦

Unbound ellipsoid (0◦/90◦) 4.2 1D Mean SSC 2.11 2.12 2.17 1.95
Std 0.29 0.30 0.27 0.22

2D Mean SSC 2.11 2.08 2.09 2.08
Std 0.04 0.03 0.03 0.06

Unbound ellipsoid (30◦/60◦) 3.2 1D Mean SSC 2.09 2.05 2.13 2.08
Std 0.23 0.14 0.23 0.11

2D Mean SSC 2.11 2.07 2.07 2.00
Std 0.09 0.11 0.11 0.12

Bound ellipsoid (0◦/90◦) 4.2 1D Mean SSC 2.07 2.14 2.06 1.88
Std 0.18 0.18 0.20 0.30

2D Mean SSC 2.10 2.12 2.10 2.11
Std 0.10 0.07 0.06 0.06

Bound ellipsoid (30◦/60◦) 3.2 1D Mean SSC 2.2 2.19 2.06 1.60
Std 0.58 0.61 0.40 0.44

2D Mean SSC 1.96 1.96 1.96 1.93
Std 0.03 0.05 0.04 0.07
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TABLE II. Mean and standard deviation of the strain stiffness contrast for the ellipsoidal inclusion TM phantoms for different maximum beam steered angles
for the 1D and 2D deformation tracking approaches.

Maximum steered angle (◦)

Phantom Modulus contrast Method 3◦ 6◦ 9◦ 12◦ 15◦

Unbound ellipsoid (0◦/90◦) 4.2 1D Mean SSC 2.15 2.16 2.20 2.17 2.11
Std 0.12 0.16 0.29 0.30 0.29

2D Mean SSC 2.12 2.13 2.12 2.11 2.11
Std 0.05 0.04 0.05 0.05 0.04

Unbound ellipsoid (30◦/60◦) 3.2 1D Mean SSC 2.14 2.17 2.17 2.13 2.09
Std 0.14 0.19 0.21 0.20 0.23

2D Mean SSC 2.06 2.05 2.05 2.06 2.11
Std 0.11 0.10 0.10 0.10 0.09

Bound ellipsoid (0◦/90◦) 4.2 1D Mean SSC 2.01 2.10 2.13 2.27 2.07
Std 0.25 0.25 0.21 0.60 0.18

2D Mean SSC 2.15 2.15 2.13 2.1 2.10
Std 0.07 0.07 0.07 0.09 0.10

Bound ellipsoid (30◦/60◦) 3.2 1D Mean SSC 2.01 2.10 2.13 2.27 2.07
Std 0.25 0.25 0.21 0.60 0.18

2D Mean SSC 2.15 2.15 2.13 2.11 2.10
Std 0.07 0.07 0.07 0.09 0.10

EnduraTEC Systems Group, Minnetonka, MN) and has been
reported in Ref. 1. The contrast of each phantom was esti-
mated from the ratio of Young’s modulus between the inclu-
sion and background material as also shown in Tables I and II,
respectively.

The ellipsoidal inclusion phantoms contained either a
bound inclusion (i.e., mass firmly attached to background ma-
terial mimicking malignant breast masses) or an unbound in-
clusion (i.e., mass loosely attached to the background mim-
icking benign masses). The inclusion phantom pair either
had a symmetrical ellipsoidal inclusion oriented at 0◦/90◦, or
asymmetrical inclusions oriented at 30◦/60◦ to the top sur-
face of the phantom. Both the uniform and ellipsoidal inclu-
sion phantoms were scanned using a Siemens S2000 real-time
clinical scanner (Siemens ultrasound, Mountain View, CA)
equipped with a VFX 9L4 linear array transducer. The trans-
ducer was operated at a 6 MHz center frequency, 80% band-
width, and a sampling frequency of 40 MHz. Echo signals
were collected up to a depth of 65 mm with a single focus
set at a depth of 40 mm, which also corresponds to the cen-
ter of the four ellipsoidal inclusion phantoms. Beam-steered
RF data were acquired from −15◦ to 15◦ in increments of 1◦.
Thus, 31 pairs of RF beam-steered data frames were acquired
before and after an applied deformation. Note that only a sin-
gle deformation of 1% (1 or 0.8 mm) of the phantom height
was applied to the phantom using a positioning stage. The
transducer was embedded in a compressional plate larger than
the TM phantom surface to provide a uniform deformation
over the entire TM phantom surface.

II.B. Angular and displacement vector estimation

Angular displacement vectors (along and perpendicular to
the beam direction) at each beam steered angle (θ◦) were es-
timated from the pre- and postdeformation echo signals us-

ing parallelogram shaped 2D cross correlation based displace-
ment estimation. The parallelogram shaped kernel dimensions
was 0.385 mm along the beam direction ×3 RF-lines, with a
75% overlap along beam direction and a lateral step of one
RF-line along its perpendicular direction. Note that the angu-
lar displacement pairs were estimated from a Cartesian spatial
grid obtained for each beam steered angle.

In order to register angular displacements obtained for
each beam-steered angle, the estimated angular displacement
vectors were first smoothed using spline interpolation along
each beam-steered angle. The angular displacement vectors
from each angular Cartesian spatial grid were then transferred
and registered into the Cartesian spatial grid obtained for the
0◦ RF data. A geometrical shear transformation shown in
Eq. (1) was utilized to perform the transformation to the 0◦

Cartesian grid, shown as follows:

z = ztθ ,

x = tan(θ ) × ztθ + xtθ , (1)

where θ represents each beam-steering angle ranging from
−15◦ to 15◦, ztθ and xtθ represent the axial and lateral co-
ordinates of each beam steered Cartesian spatial grid, respec-
tively, and z and x denote the axial and lateral coordinates of
the 0◦ Cartesian spatial grid.

Comparisons between the Cartesian spatial grid obtained
for 8◦ beam-steered data and its corresponding shear transfor-
mation within the Cartesian spatial grid obtained along the 0◦

direction is shown in Figs. 1(a)–1(d), where (a) represents the
spatial grid for the 8◦ beam-steered angle and (b) represents
its corresponding shear geometrical transformation within the
spatial grid for the 0◦ coordinate system. Note that a rectangu-
lar spatial grid within the steered coordinates was transformed
into a parallelogram shape within the 0◦ coordinates. Based
on this spatial grid and shear transformation, both the angu-
lar displacement vectors were transferred onto the spatial grid
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FIG. 1. Shear transformation for the spatial grid (top), along with the angu-
lar displacement vector. The left column shows the spatial grid and angular
displacements obtained using a 8◦ beam-steered angle, respectively. The right
column shows the spatial grid and angular displacement on a 0◦ spatial grid.

obtained for the 0◦ RF data using two-dimensional interpo-
lation. Figures 1(c) and 1(d) show the angular displacement
vector along the beam-steered angle (8◦) for the symmetrical
bound ellipsoidal phantom, while Fig. 1(c) presents the exper-
imental phantom results obtained within its beam-steered co-
ordinates and Fig. 1(d) presents its corresponding shear trans-
formation results for the 0◦ coordinates. In a similar manner,
all the angular displacement vectors were shear transformed
to the same Cartesian spatial grid using interpolation for each
beam-steered angle.

For each point O in space from a single beam-steered
acquisition, its total displacement vector �d is observed and
tracked using 2D deformation tracking; both along and per-
pendicular to the beam-steered direction as shown in Fig. 2.
Under the assumption of uθ as a unit vector along the beam-
steered angle θ and uT

θ as a unit vector perpendicular to the
beam-steered direction. Let pzθ denote the projection of the
total displacement vector �d in the beam-steered direction and
pxθ be its projection onto the unit vector uT

θ perpendicular to
the beam-steered direction. Thus, the projection can be ex-
pressed as the dot product between the total displacement and
the projected directional unit vector as shown in Eq. (2)[

pzθ

pxθ

]
=

[ �d · uθ

�d · uT
θ

]
=

[
cos θ sin θ

− sin θ cos θ

] [
dz

dx

]
, (2)

where dz and dx represent the component of the displacement
vector �d along the z and x direction, respectively, and θ rep-
resents the beam-steered angle.

FIG. 2. Projection of the actual displacement vector �d at point O, onto unit
vectors along uθ and perpendicular to uT

θ beam steered direction.

All the angular displacement vectors passing through the
point O were registered onto the zero-angle grid, and were
then used to compute the axial and lateral displacement vec-
tor using a 2D least-squares displacement estimator shown in
Eq. (3). Previously only the component of the axial and lat-
eral displacement along the beam direction were estimated
from the angular displacement vectors using a 1D rotational
transformation.15, 21 The contribution of the lateral angular
displacement vector to the actual lateral displacement com-
ponent was calculated based on each spatial angular displace-
ment, using

q̄ = Ad̄ + n̄, (3)

where

q̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qzθ1

qzθ2

...

qzθm

qxθ1

qxθ2

...

qxθm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosθ1 sinθ1

cosθ2 sinθ2

...
...

cosθm sinθm

−sinθ1 cosθ1

−sinθ2 cosθ2

...
...

−sinθm cosθm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d̄ =
[

dz

dx

]
,

and n̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nzθ1

nzθ2

...

nzθm

nxθ1

nxθ2

...

nxθm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that qzθi
and qxθi

represent an observation of the
displacement vector d̄ along and perpendicular to the beam-
steered angle θ i for i = 1, . . . , m, respectively, where m de-
notes the total number of beam-steered frames acquired. In
Eq. (1), A represents the transformation matrix that includes
contributions due to the steering angle θ i along the clockwise
direction. Note that dz and dx represent the axial and lateral
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displacement vector components (relative to the applied de-
formation), and nzθi

and nxθi
denote the noise contributions in

the estimated displacements along and perpendicular to each
beam-steered angle θ i, respectively.

The least-squares solution for the displacement vector was
previously described by Techavipoo and Varghese28 and is
given by

d̃ = (ATA)−1ATq̄. (4)

We also utilize 2D spline fitting to obtain subsample dis-
placement estimates for both the axial and lateral displace-
ment vectors. The normal and shear strain tensors were then
calculated from the axial and lateral displacement vectors us-
ing a least-squares strain estimator.

II.C. Estimation of SNRe, CNRe, and strain stiffness
contrast (SSC)

A selected region of interest (ROI) around the focal depth
(40 mm) of the axial and lateral strain tensor images were
used to compute SNRe, CNRe, and SSC values using both 1D
and 2D deformation tracking methods. The SSC is defined
as the ratio of the mean strain within the inclusion to that
of the background estimated from the axial strain image.37

Since the strain tensor image was calculated using angular
displacements obtained using independent beam-steered data,
the number of angular pixels that contribute to the axial and
lateral strain tensor image is the largest in the central triangu-
lar region and decreases on either side. The isosceles trape-
zoidal shaped ROI in the strain tensor image that utilizes all
available beam-steered contributions during the image regis-
tration process was selected for SNRe analysis. This ROI has
a height of 20 mm, a top long edge of 15 mm, and a bottom
short edge of 6 mm as shown in Fig. 3(a). The CNRe analysis,
however, was performed using three rectangular shaped ROI,
one within the inclusion and two ROIs located in the back-
ground at a similar depth as shown in Fig. 3(b). The area of
ROI within the inclusion was equal to the sum of two back-
ground ROIs, which were placed symmetrically in the back-
ground and parallel to the ROI within the inclusion.

The SNRe in the strain tensor images for uniformly elastic
phantoms using both 1D and 2D deformation tracking meth-
ods were computed to quantify the respective improvement in
the image. The SNRe is defined as5, 38, 39

SNRe = m

σ
, (5)

where m and σ represent the mean and standard deviation of
the strain estimates in the selected ROI, respectively. We also
analyze variations in the SNRe values for different maximum
beam-steered angles and for different beam-steered angular
increments.

Ellipsoidal inclusion phantoms were used to estimate the
CNRe and corresponding SSC values, which are defined as
follows:37

CNRe = 2(mi − mb)2

(σ 2
i + σ 2

b )
, (6)

FIG. 3. Axial strain images obtained using 2D beam steered datasets for
the uniformly elastic TM phantom (a) and an ellipsoidal inclusion phan-
tom (b). The 0.02 value on the color bar represents a 2% strain. The ROIs
shown on the images were used to estimate the SNRe and CNRe, respectively.
The solid line represents the maximum beam steered angle used for angular
compounding.

SSC = mi

mb

, (7)

where mi and mb represent the mean strain estimated in
the selected ROI within the inclusion and background, respec-
tively, σ 2

i and σ 2
b denote the corresponding variance within the

inclusion and background ROI, respectively.
In order to obtain statistically significant results, we esti-

mated the mean and standard deviation of SNRe and CNRe

obtained over ten independent RF data acquisitions. Statisti-
cal analysis was based on similarly selected ROI in the strain
tensor images. Each independent beam-steered pre- and post-
deformation dataset was processed using both 1D and 2D de-
formation tracking approaches.

III. RESULTS

The plots shown in Figs. 4 and 5 present the mean
and standard deviation of the SNRe estimated over ten
independent axial strain tensor images. Figure 4 presents the
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FIG. 4. Plots of the mean SNRe and standard deviation (error bars) over
ten independent RF datasets acquired on a uniformly elastic TM phantom
demonstrating the impact of beam steered angular increment for 1D vs 2D
deformation tracking.

variation of the SNRe versus the beam-steered angular incre-
ment, for a maximum beam-steered angle of ±15◦, and an-
gular increments of 1◦, 3◦, 5◦, and 15◦. Each corresponding
strain tensor image was calculated from 31, 11, 5, and 3 beam-
steered RF echo signal frame pairs, respectively. Observe that
the SNRe values decrease with a decrease in the total num-
ber of angular displacement images used for image registra-
tion and compounding for both 1D and 2D deformation track-
ing for the same maximum beam-steered angle. For the same
maximum angle, improved SNRe is obtained with an increase
in the number of angular displacement frames used. Note that
2D deformation tracking provides both higher mean SNRe

values and significantly lower standard deviations indicated
by the error bars when more than five beam-steered data frame
pairs are used for image registration. The results indicate that
2D tracking is a more robust displacement estimation method.
On the other hand, 1D deformation tracking exhibits signifi-
cantly higher standard deviations which increases the number
of angular displacement images needed to obtain a reason-
able strain tensor image, when compared to 2D deformation
tracking. This is due to increased ultrasound noise artifacts
with depth due to attenuation and increased noise artifacts for
beam-steered RF data obtained at larger beam insonification
angles.

FIG. 5. Plots of mean SNRe and standard deviation (error bars) over ten in-
dependent RF datasets acquired on a uniform TM phantom demonstrating
the impact of the maximum beam-steered angle on compounded strain im-
ages for 1D vs 2D deformation tracking.

Variation in the SNRe versus the maximum beam-steered
angle used for image registration in increments of 1◦ is shown
in Fig. 5. Observe that the SNRe slightly decreases with an
increase in the maximum angle. This is due to the increased
artifacts in beam-steered echo data pairs obtained at larger
beam-steered angles. Larger beam-steered angles provide ad-
ditional lateral displacement information at the cost of higher
noise artifacts in the angular displacement images. Note that
the 2D deformation tracking method provides stable SNRe

values over all the strain tensor images estimated at different
maximum angles. Note that 1D deformation tracking provides
a comparable mean SNRe value to 2D deformation tracking
method up to a maximum angle of 6◦ with the SNRe drop-
ping with larger maximum angles.

Four ellipsoidal unbound and bound inclusion phan-
toms described previously were also used to compare de-
formation tracking performance between the 1D and 2D
approaches. Figures 6–8 present the displacement, normal
strain, and shear strain images obtained using 1D and 2D
approaches for the unbound asymmetrical ellipsoidal inclu-
sion phantom, respectively, with a maximum angle of 15◦

in increments of 1◦. Figure 6 presents compounded axial
displacement images (a) and (b), and lateral displacement
images (c) and (d) for the asymmetrical (30◦) unbound el-
lipsoidal phantom obtained with both 1D (a) and (c) and
2D (b) and (d) processing. Observe that 2D deformation
tracking provides improved accuracy and precision for the
axial displacement vector image with obvious and precise
mass/background interfaces as shown in Fig. 6(b). While 1D
processing also exhibits axial displacement vector images
with improved accuracy above the focal depth (≤40 mm)
as shown in Fig. 6(a), it fails to track the mass/background
interface accurately near the bottom edges of the interface.
The mass/background interface is blurred toward the bot-
tom of the inclusion. This is partly due to increased track-
ing errors with 1D processing, reduced signal-to-noise ra-
tio of the echo signals due to attenuation, and artifacts with
beam-steered data at larger insonification angles. As shown
in Figs. 6(c) and 6(d), the lateral displacement vector image
obtained using 2D deformation tracking provides a smoother
image with relatively precise mass/background interfaces
when compared to that obtained using 1D deformation
tracking.

All of these local displacement vector improvements ob-
tained using 2D processing contribute to the significant en-
hancement visualized on its corresponding axial and lateral
strain tensor image when compared to 1D processing as
shown in Fig. 7. The rectangular regions outlined in dotted
show the selected ROIs within the inclusion and the back-
ground regions. The solid line represents the left edge of
maximum beam-steered angle (15◦) for the trapezoidal region
previously mentioned. Observe that 2D deformation tracking
provides precise mass/background interfaces with the inclu-
sion size and shape accurately illustrated in the axial strain
tensor image as shown in Fig. 7(b). The fact that 1D pro-
cessing fails to estimate strain tensor estimates below the fo-
cal depth (>40 mm) for the lateral strain tensor as shown in
Fig. 7(c) and below the 50 mm for the axial strain tensor as
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FIG. 6. Axial displacement (a) and (b) and lateral displacement (c) and (d) images obtained using 1D (a) and (c) and 2D (b) and (d), beam steered data for the
asymmetric (30◦) unbound ellipsoid TM phantom. The units in the color bar for the displacement is in millimeters.

shown in Fig. 7(a). These artifacts are not visible with 2D de-
formation tracking as illustrated in Figs. 7(b) and 7(d).

Figure 8 presents a comparison of axial-shear strain images
(a) and (b) and full-shear strain images (c) and (d) obtained
using 1D (a) and (c) and 2D (b) and (d) deformation track-
ing methods. The blue and red colors in the figure represent
different directions for the shear strain. The value of 0.006
on the color bar corresponds to a 0.6% strain. Note that the
fact that 1D deformation tracking fails to track deformations
deeper than 45 mm is evident in both the axial-shear strain
and full-shear strain images. Also observe that 2D deforma-
tion tracking provides improved accuracy and precision for
the axial-shear and full-shear strain with precise shear strain
regions visualized around the mass/background interfaces as
shown in Figs. 8(b) and 8(d). Note that the inclusion shape
and size are also clearly visualized when compared to the
results obtained with 1D deformation tracking. The red and
blue shear noise artifacts that appear in the background in the
images in Figs. 8(a) and 8(c) is also significantly reduced as
observed in Figs. 8(b) and 8(d).

Figure 9 presents the impact of the angular increment on
the CNRe for axial strain tensor images for the four ellip-
soidal phantoms for a maximum beam steered angle of ±15◦

and angular increments of 1◦, 3◦, 5◦, and 15◦. Here, Fig. 9(a)
presents results for the symmetrical unbound ellipsoidal phan-

tom; Fig. 9(b) for the asymmetrical unbound ellipsoidal phan-
tom; Fig. 9(c) for the symmetrical bound ellipsoidal phantom;
and Fig. 9(d) for the asymmetrical bound ellipsoidal phantom.
The error bars denote the standard deviation of the CNRe es-
timated over ten independent experiments. Observe that 2D
deformation tracking provides a higher mean CNRe and sig-
nificantly lower variance in the image when compared to 1D
deformation tracking for the four different ellipsoidal phan-
toms. The mean CNRe for unbound masses utilizing 2D de-
formation tracking method is about 10 dB higher than that ob-
tained using 1D deformation tracking as shown in Figs. 9(a)
and 9(b); and about 6 dB for bound masses as presented in
Figs. 9(c) and 9(d). Note that for smaller angular increments
(1◦ up to 3◦), the CNRe is almost constant along with the in-
crease in the steered angular increment using 2D processing,
however, for larger angular increments, the mean CNRe de-
creases along an increase in the angular increment for the four
phantoms. On the other hand, the CNRe is relatively constant
with an increase in the angular increment for 1D deforma-
tion tracking. This is due to the concomitant increase in ar-
tifacts associated with the angular strain image obtained at
larger beam steered angles, and the inability of 1D processing
to accurately track the deformation in this region.

Mean and standard deviation values of the correspond-
ing SSC estimated versus different beam-steered angular
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FIG. 7. Axial strain (a) and (b) and lateral strain (c) and (d) images obtained using 1D (a) and (c) and 2D (b) and (d), beam steered data for the asymmetric
(30◦) bound ellipsoid TM phantom. The 0.008 value on the color bar represents a 0.8% strain. The ROIs shown were used to estimate CNRe and strain stiffness
contrast. The solid line represents the maximum beam steered angle used for angular compounding.

increments used to generate the compounded image is shown
in Table I. The mean and standard deviation were estimated
over the ten independent experiments corresponding to the
CNRe computations evaluated previously. The actual modu-
lus contrast for the symmetrical bound/unbound ellipsoidal
phantom (0◦/90◦) was 4.2 while that for the asymmetrical
bound/unbound ellipsoidal phantoms (30◦/60◦) was 3.2, re-
spectively. Observe that strain stiffness contrast calculated
from axial-strain images over the ROI within the mass and
ROI in the background was around 2.1 for the symmetrical
phantoms, and 2.0 for the asymmetrical phantoms. For each
angular increment, the overall standard deviation obtained us-
ing 1D processing was significantly larger than that obtained
using 2D processing, ranging from a factor of 1 to about 19 in
some instances. For the same phantom, larger beam-steered
angles (15◦) introduce increased standard deviation with 1D
processing when compared to 2D processing. Results are im-
proved with the use of smaller angles (on the order of 1◦ or
3◦). Note that the mean value of the SSC estimated using 2D
processing is more consistent than those values obtained us-
ing the 1D estimator.

Figure 10 presents a plot of the CNRe versus the maxi-
mum beam-steered angle in increments of 1◦. Note that the

mean CNRe plot for the 1D deformation tracking decreases
with an increase in the maximum angle. This is due to the
increased noise artifacts associated with larger beam-steered
angles. Larger beam-steered angles provide additional lat-
eral displacement information, however, with the concomi-
tant increase in noise artifacts due to the larger insonification
angles. Note that the standard deviation of the CNRe plots
vary greatly with increased maximum angle especially with
1D tracking. The mean CNRe calculated using 2D deforma-
tion tracking is about 10 dB higher than that estimated using
1D deformation tracking. Observe that the bound ellipsoidal
phantom has a larger variation when compared to unbound
ellipsoidal phantom. Table II presents the corresponding SSC
estimated for different maximum beam-steered angles. The
SSC for the compounded strain images obtained using 2D
deformation tracking provides consistent results over all the
maximum angles used. The symmetrical unbound/bound el-
lipsoidal phantom pair has a SSC around 2.1. On the other
hand, the asymmetrical unbound/bound ellipsoidal phantom
pair has a SSC around 2.0, which is similar to the values re-
ported in Table I. For each maximum beam-steered angle,
standard deviation values obtained using 1D processing are
about 1–7 times larger than the values obtained using 2D
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FIG. 8. Axial-shear strain (a) and (b) and full-shear strain (c) and (d) images obtained using 1D (a) and (c) and 2D (b) and (d), beam steered data for the
asymmetric (30◦) bound ellipsoid TM phantom. The 0.006 value on the color bar represents a 0.6% strain. The ROIs shown were used to estimate CNRe and
strain stiffness contrast.

processing. Bound inclusions exhibit increased variance when
compared to unbound inclusions. The mean values across the
maximum steered angles are also more consistent with 2D
processing.

For both the uniformly elastic and inclusion phantoms, a
window length of 3 mm was required to estimate accurate
displacements with 1D processing. On the other hand, with
2D processing the 2D parallelogram shaped processing ker-
nels used had dimensions of 0.385 mm ×3 RF-lines to ob-
tain accurate displacement results. Thus, based on the win-
dow length,5–7 the spatial resolution along the beam direction
improved by a factor of 7.79 for 2D processing when com-
pared to 1D processing. Both the SNRe and CNRe estimates
obtained with 1D processing are also lower when compared
to that obtained using 2D processing.

IV. DISCUSSION AND CONCLUSIONS

Results obtained with uniformly elastic phantoms in this
paper, demonstrate the significant improvement in the spatial
resolution and SNRe obtained with the use of the 2D paral-

lelogram shaped processing kernels (0.385 mm ×3 RF-lines)
when compared to that obtained with 1D processing with
3 mm gated rectangular data segments. Spatial resolution im-
proved by a factor around 7 with 2D processing, while the
SNRe with 2D processing is approximately 5 dB better than
that obtained with 1D processing. The ROI over which the
SNRe was computed corresponds to the trapezoidal region
over which angular displacement estimates from all the beam-
steered angles are included in the composite axial-strain im-
age. For the same maximum beam-steered angle, higher SNRe

is obtained with an increase in the number of angular dis-
placements used to obtain the compounded strain images. On
the other hand for the same angular increment, an increase in
the maximum beam-steered angle slightly reduces the SNRe

obtained using 2D deformation tracking methods. 1D defor-
mation tracking presents similar declines in the SNRe for
maximum angles less than or equal to 6◦, however, the per-
formance drops rapidly for maximum angles greater than 6◦.
In addition, the standard deviation of the compounded axial
strain images over ten independent RF datasets utilizing 2D
deformation tracking methods is 1/7 of that obtained utilizing
1D deformation tracking, demonstrating that 2D deformation
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FIG. 9. Plots of mean CNRe and standard deviation (error bars) over ten independent beam-steered RF datasets acquired on the four ellipsoid TM phantoms
demonstrating the impact of the beam steered angular increment for 1D vs 2D processing. The subplots represent results for (a) symmetric unbound, (b)
asymmetric unbound, (c) symmetric bound, and (d) asymmetric bound phantoms, respectively.

FIG. 10. Plots of mean CNRe and standard deviation (error bars) over ten independent RF datasets acquired on the four ellipsoid TM phantoms demonstrating
the impact of the maximum beam-steered angle for 1D vs 2D processing. The subplots represent results for the (a) symmetric unbound, (b) asymmetric unbound,
(c) symmetric bound, and (d) asymmetric bound phantom, respectively.
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FIG. 11. Plots of mean SNRe and standard deviation (error bars) over ten independent RF datasets acquired on an uniformly elastic TM phantom demonstrating
the impact of different maximum angles on similar number of compounded strain images. Results are shown for 3 beam steered angles (a), 5 beam-steered angles
(b), 7 beam-steered angles (c), and 11 beam-steered angles (d), respectively.

tracking is both an accurate and robust deformation tracking
method.

Noise artifacts observed below the inclusion with 1D pro-
cessing were not visible with 2D processing for displacement,
strain and shear strain images, demonstrating the superior de-
formation tracking obtained with 2D tracking, especially for
regions with lower signal-to-noise. Lateral strain images that
were poorly tracked using the 1D deformation tracking ap-
proach are significantly improved with 2D processing. In ad-
dition, 2D deformation tracking provides clear and smooth
inclusion/background interfaces over the entire image, where
these interfaces clearly differentiate the inclusions for both
unbound and bound masses. Asymmetrical inclusion phan-
toms poorly tracked with 1D processing are clearly visualized
with 2D processing. Background noise artifacts in strain im-
ages observed with 1D processing were significantly reduced
using 2D processing.

Experimental results for the ellipsoidal phantoms show
that the 2D parallelogram shaped processing blocks for de-
formation tracking provide a significant improvement in the
CNRe of 14 dB for unbound masses and 8 dB for bound
masses, respectively, for a maximum angle of 15◦, when com-
pared to results obtained using 1D deformation tracking. The
CNRe curves presented in Fig. 9 exhibit saturation for smaller
angular increments, which corresponds to results presented in
Ref. 11. For smaller angular increments, the angular displace-
ments obtained are highly correlated, and an angular incre-

ment of approximately 3◦ is enough to obtain accurate com-
pounded strain images using either 1D or 2D deformation
tracking methods. Since the error bars for 1D processing are
significantly larger than those for 2D processing, there is some
overlap between the error bars for the two methods. However,
note the length of the error bars for 2D processing when com-
pared to 1D deformation tracking, which partly indicates the
robustness of the 2D deformation tracking approach described
in this paper.

The focus in this paper was on the evaluation of improve-
ments in the axial strain with angular compounding. Our re-
sults in Fig. 3 demonstrate that although the SNRe decreases
with a reduction in the number of angular data that were com-
pounded, the improvement obtained with an increase in the
angular increments of 1◦–3◦ (1 dB decrease) and 1◦–5◦ (2 dB
decrease) were not very large. Figure 11 presents SNRe varia-
tions obtained from 3 (a), 5 (b), 7 (c), and 11 (d) beam-steered
datasets for different maximum angles, respectively. The 0◦

dataset is included for all computations in this paper. Note
that for only three beam-steered datasets, the SNRe drops off
with an increase in the maximum value of the steered angle.
This is due to the noise artifacts introduced by larger insoni-
fication angles, where the SNRe decreases about 7 dB for the
largest steered angle of ±15◦ in Fig. 11(a). The maximum
value of the SNRe obtained with angular compounding for
the axial strain image is around 30 dB, which is achieved for
lower maximum steered angles of less than 10◦. In a similar
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manner in Fig. 9, smaller angular increments on the order of
1◦–3◦, also provide similar CNRe results. For a maximum an-
gle of 15◦, 11 beam-steered datasets at 3◦ increments provide
similar performance as 31 beam-steered datasets at 1◦ angu-
lar increments. In general, an optimal number of beam-steered
datasets would be the most appropriate for a given maximum
value of the beam-steered angle. However, it is difficult to de-
termine a generic value of an optimum angular increment and
maximum angle as it would also depend on the transducer
center frequency, bandwidth, and array transducer construc-
tion parameters that would determine side-lobes and grating
lobes. In general, from our results for the system and trans-
ducer utilized, the SNRe and CNRe are maximized for angular
increments around 3◦ and maximum angles less than 10◦.

Several investigators have also reported on the use of only
three beam-steered datasets to estimate both axial and lat-
eral displacement vectors and strain tensors.21, 30 The premise
employed by these investigators is that the 0◦ dataset would
provide axial strain information, while the beam-steered data
acquired at the largest possible steered angle could be uti-
lized for lateral strain computation by estimation of the lat-
eral components along the beam-steered data. Larger beam-
steered angles provide more lateral deformation information
at the cost of introducing additional noise artifacts into both
the strain tensor images. Larger steered angles improve lat-
eral strain estimation, however, the impact of grating lobes
and other noise artifacts have to be considered especially for
linear array transducers. However, these larger beam-steered
angles also significantly reduce both the SNRe and CNRe in
the axial strain images as illustrated in Fig. 11(a) for the three
datasets obtained at the 0◦ and ±15◦ angular increments.

The discussion in the above two paragraphs demonstrates
the opposing and competing requirements if one attempts to
maximize the SNRe and CNRe in both the axial and lateral
strain tensors utilizing the same beam-steered datasets. Max-
imizing the SNRe and CNRe for axial strain imaging requires
smaller angular increments and lower maximum steered an-
gles as illustrated in this paper. On the other hand, accurate
lateral strain imaging require larger beam-steered angles.15, 21

Several tradeoffs therefore have to be considered, if one
proposes to minimize the number of beam-steered angles
for clinical applications. If the temporal resolution is impor-
tant, for example, for imaging moving structures fewer angles
should be utilized. On the other hand, if the spatial resolu-
tion and improvement in the SNRe and CNRe is the decid-
ing parameter, more beam-steered datasets can be included in
the computation to maximize the SNRe and CNRe obtained.
Computational aspects with beam steering have also to be
considered for clinical applications. In our implementation,
beam-steered data acquisition was inefficient since it was per-
formed using a script on a laptop to control the data acqui-
sition. Processing of the beam-steered RF datasets was also
performed using MATLAB. Computationally efficient imple-
mentations of both 1D and 2D processing exist that would
enable us to obtain angular displacements in real-time. How-
ever, reductions in the frame-rate for strain imaging will defi-
nitely occur with the use of a larger number of steered angles
for angular compounding. In addition, beam steering, data ac-

quisition, and processing have to be implemented on the ul-
trasound system to further improve computational efficiency.
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