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Purpose: A three-dimensional finite element analysis based canine heart model is introduced that
would enable the assessment of cardiac function.
Methods: The three-dimensional canine heart model is based on the cardiac deformation and
motion model obtained from the Cardiac Mechanics Research Group at UCSD. The canine heart
model is incorporated into ultrasound simulation programs previously developed in the laboratory,
enabling the generation of simulated ultrasound radiofrequency data to evaluate algorithms for
cardiac elastography. The authors utilize a two-dimensional multilevel hybrid method to estimate
local displacements and strain from the simulated cardiac radiofrequency data.
Results: Tissue displacements and strains estimated along both the axial and lateral directions �with
respect to the ultrasound scan plane� are compared to the actual scatterer movement obtained using
the canine heart model. Simulation and strain estimation algorithms combined with the three-
dimensional canine heart model provide high resolution displacement and strain curves for im-
proved analysis of cardiac function. The use of principal component analysis along parasternal
cardiac short axis views is also presented.
Conclusions: A 3D cardiac deformation model is proposed for evaluating displacement tracking
and strain estimation algorithms for cardiac strain imaging. Validation of the model is shown using
ultrasound simulations to generate axial and lateral displacement and strain curves that are similar
to the actual axial and lateral displacement and strain curves. © 2010 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3496326�
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I. INTRODUCTION

Coronary artery disease is the leading cause of morbidity and
mortality in the United States. Despite advances in preven-
tion and treatment of this disorder, there remains a large
patient population who are difficult to diagnose noninva-
sively, yet require percutaneous or surgical
revascularization.1,2 Myocardial ischemia is generally associ-
ated with impaired regional myocardial function. Current
clinical assessment uses analysis of myocardial wall motion
abnormalities using echocardiography,2,3 nuclear imaging,4–6

or magnetic resonance imaging.7–9

Echocardiography has been routinely used for the assess-
ment of regional myocardial function, left ventricular size,
and structure since it provides real-time information, is por-
table, and is readily available. Both B-mode and M-mode
imaging have been utilized for echocardiographic analysis.
However, this type of analysis is limited because it is most
frequently used in a semiquantitative fashion to assess
both global and regional changes. As a consequence, there

is a considerable variation among interpreters of
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echocardiograms.10 Thickening and shortening of the wall
muscle visualized using echocardiography during the cardiac
cycle can also be characterized by local tissue displacements
and measurements of strain, which could be useful indicators
of myocardial performance.11

Tissue Doppler imaging �TDI� has been used to assess
myocardial muscle displacements, providing quantitative pa-
rameters such as the strain and the strain rate �speed at which
the deformation �strain� occurs�.12,13 Since TDI based meth-
ods rely on narrow-band Doppler phase-shift analysis, asso-
ciated disadvantages, such as angle dependence, poor axial
resolution, aliasing, and increase in ambiguity of the velocity
information with center frequency, are inherited.14–16 Limita-
tions with Doppler-derived velocity and strain indices have
renewed interest in using B-mode based strain and strain rate
measurements.14–17 B-mode based calculations of strain have
the considerable advantage of not being directionally limited.
However, strain estimates obtained with B-mode or envelope
signals are less accurate than those obtained with radiofre-
quency �RF� data.18

19–23
Cardiac elastography using RF echo signals provide
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more accurate 2D strain information when compared to
B-mode data,18 as long as the RF data, at a sufficient frame
rate, are acquired.24 In addition, when compared to speckle
tracking of envelope data, RF tracking provides significant
improvements in the signal-to-noise ratio and sensitivity,
along with improved accuracy and precision in displacement
and strain estimation.18 Konofagou et al.19 have demon-
strated the ability to obtain accurate strain information over a
small 10°–15° sector containing eight to ten A-lines. The
small sector enables the acquisition of RF data at extremely
high frame rates. D’Hooge et al.21 reviewed the principles of
cardiac strain and strain rate imaging, describing the drift in
the time-integrated strain curve which has to be compensated
before clinical diagnosis.

However, most of the strain tensor estimation methods
discussed in the literature22,25–29 utilizing RF data estimate
primarily the axial component of the strain, while the lateral
�perpendicular to insonification direction and within the scan
plane� and elevational �perpendicular to the insonification
direction and scan plane� displacements and strain are gen-
erally not estimated. Since tissue deformation introduces mo-
tion and displacements in three dimensions �3D�, all strain
tensor and displacement vector components are required to
characterize the deformation.27,30 Several methods have been
proposed for the estimation of the displacement vector and
strain tensor components.31–34 Estimation of all the displace-
ment vector and strain tensor components provides a com-
plete depiction of tissue deformation. However, in certain
cases such as cardiac motion,19,20 where tissue deformations
are complex, other approaches for quantifying the displace-
ment and strain may be necessary.35

Principal component analysis �PCA�36,37 is another
method for characterizing the strain distribution where the
primary strain tensor components may not lie along the ul-
trasound insonification direction. Principal strains are defined
as the normal strain components along the deformation axes
where the shearing strains are included in principal strains.
Zervantonakis et al.35 utilized PCA analysis to reduce angle
and centroid dependence for radial strain in myocardial elas-
tography and to obtain radial and circumferential strain im-
ages. Compared to polar strain estimates, principal strain
components are more robust in the detection of cardiac dys-
function independent of the echocardiographic view.

Ultrasound system manufacturers currently provide 3D
B-mode based cardiac clinical ultrasound systems.38,39 More
useful information can be obtained from 3D ultrasound im-
age data with a large number of viewing planes that can be
reconstructed from the 3D data set. Over the past decade, 2D
ultrasound transducers have also moved beyond the research
environment and into clinical settings.40 Although current 3D
cardiac ultrasound imaging systems now provide real-time
full 3D �4D� imaging over the entire heart, they typically do
not provide access to 3D RF data. Most clinical cardiac ul-
trasound systems currently only provide 2D cardiac ultra-
sound RF data. Finite element analysis �FEA� based model-
ing is therefore necessary to enable evaluation and testing of
3D strain estimation and tracking algorithms. The 3D canine

41,42
heart model and ultrasound simulation presented in this
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paper provides the ability to evaluate 3D displacement track-
ing and strain estimation algorithms with 3D RF data at the
high frame rates needed for strain imaging.

II. MATERIALS AND METHODS

We present a 3D cardiac mechanics model41,42 for normal
canine hearts utilized to generate realistic deformation pat-
terns introduced during a cardiac cycle incorporated into an
ultrasound simulation. These models would enable the utili-
zation of 3D ultrasound simulation programs utilizing 2D
transducer arrays to obtain 4D �3D+time� RF data over the
entire cardiac cycle.

III. 3D CANINE HEART MODEL

An FEA model based on the “CONTINUITY 6” software that
enables simulation of all movement and deformation aspects
(compression, translation, and torsion) of a canine heart is
used.41,42 This software package, developed by the Cardiac
Mechanics Research Group at the University of California
San Diego (UCSD), provides solutions for 3D nonlinear fi-
nite deformation elasticity and nonlinear reaction-diffusion
systems applicable to the mechanics and electrophysiology of
the mammalian (canine) heart.41,42

CONTINUITY 6 is distrib-
uted free for academic research by the National Biomedical
Computation Resource and runs under Windows, Mac OS, or
Linux. Simulated ultrasound RF data have also been ob-
tained using Field II and the FEA model.43

We utilize the left ventricular model provided by UCSD
in conjunction with the ultrasound simulation program devel-
oped in our laboratory to evaluate methods to characterize
cardiac function by estimating local displacements and
strains. The canine heart data contain the movement of 1296
points located in the canine heart wall acquired at a sampling
rate of 250 Hz. Figure 1 presents 3D coordinates of the 1296
points at two different time instances over the cardiac cycle.
The heart rate of the canine heart model was 2 beats/s, which
enables the acquisition of cardiac ultrasound simulated RF
data at temporal frame rates of up to 125 frames per cardiac
cycle. Figure 2 depicts the movement of a point located on
the cardiac wall over three cardiac cycles.

The deformation information provided with CONTINUITY 6

is, however, too coarse for the generation of ultrasound back-
scattered signals. We therefore reconstruct the 3D continuous
smooth surface of the canine heart model utilizing the 3D
positional information provided, namely, from the limited
number, i.e., 1296 data points. The ultrasound simulation re-
quires random positioning of scatterers over the entire car-
diac volume at a number density of around ten scatterers per
cubic millimeter to ensure Rayleigh scattering statistics. In
addition, the ability to track the deformation of these scatter-
ers over the cardiac cycle is also essential. Utilization of this
scatterer density requires the inclusion of approximately
1.1�106 scatterers based on the volume of the canine heart
model. We utilize 3D nonlinear interpolation to obtain a finer
motion/deformation grid to track the motion of these embed-

ded scatterers.



5878 H. Chen and T. Varghese: Three-dimensional canine heart model for cardiac elastography 5878
IV. 3D NONLINEAR INTERPOLATION „CUBIC
HERMITE INTERPOLATION…

The data points within the canine heart model are inter-
polated based on piecewise cubic Hermite interpolation. The
cubic Hermite polynomial has interpolative properties where
both the function values and their derivatives are known at
the end points of the interval. Let �xi ,yi� and �xi+1 ,yi+1� de-
note two end points of the interval and hi denote the length
of the interval

hi = xi+1 − xi. �1�

Let di denote the derivative �slope� of the interpolant at xi,

di = f��xi� . �2�

The interval function �xi ,xi+1� can be expressed in term of
local variable s=x−xi

f�x� =
3his

2 − 2s3

hi
3 yi+1 +

h3 − 3his
2 + 2s3

hi
3 yi +

s2�s − hi�
hi

2 di+1

+
s�s − hi�2

hi
2 di. �3�

Note that Eq. �3� satisfies four interpolation conditions,

(a) start of cardiac cycle

FIG. 1. Three-dimensional coordinates of the 1296 points obtained using the
cycle.

FIG. 2. Deformation of one of the points located on the cardiac wall �shown

in Fig. 1� over three cardiac cycles.
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f��xi� = di; f��xi+1� = di+1; f�xi� = yi; f�xi+1� = yi+1.

�4�

If both the function and derivative values at a set of data
points are available, we can reproduce the continuous func-
tion with piecewise cubic Hermite interpolation. Note that
even if the derivative values are not provided, we can define
the slope di. Fritsch et al.44 and Kahaner et al.45 describe
methods to determine the slope di using data values xi and yi.
The key idea is to keep the interpolation function f�x� propa-
gating through each point smoothly. There are two ways to
determine the value of the slope di.

�1� If �yi�yi−1� and �yi�yi+1� or �yi�yi−1� and �yi�yi+1�,
di=0. The slope di is equal to 0 if yi is the local mini-
mum or maximum when intervals hi−1 and hi on both
sides of yi are equal.

�2� If �hi−1=hi� and �yi−1�yi�yi+1� or �yi−1�yi�yi+1�, the
reciprocal slope �1 /di� is equal to the average of the
reciprocal slopes of the piecewise linear interpolant on
either side,

1

di
=

1

2
� 1

�i−1
+

1

�i
� , �5�

where �i=yi+1−yi /hi and �i−1=yi−yi−1 /hi−1.
�3� If �hi−1�hi�, then di is a weighted harmonic mean, with

weights determined by the lengths of the two intervals

3hi−1 + 3hi

di
=

hi−1 + 2hi

�i−1
+

2hi−1 + hi

�i
. �6�

Although the piecewise cubic Hermite interpolation can
be extended to higher dimensions,46 it requires complex
analysis with a large computational burden. The complex
higher dimensional interpolation is, however, not necessary
and three independent piecewise cubic Hermite interpola-
tions sequentially along the x, y, and z coordinates can be
performed to provide sufficient boundary information for
scatterer locations. The three interpolation steps are per-
formed sequentially along the different directions, for ex-

(b) 60% of cardiac cycle

D cardiac mechanics model, depicted at two time instances over the cardiac
UCS
ample, first through the cardiac wall, second in the direction
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around the short axis view of the heart, and finally along the
long axis view of the heart. Figure 3 denotes the three inter-
polation steps depicted using three different colors to identify
the interpolation direction. The density of the curves in Fig. 3
is downsampled by a factor of 4 to appropriately display the
information. In the first stage, 45 data points are obtained
through the 3D interpolation procedure from 12 original data
points by interpolating through the cardiac wall. These inter-
polation curves are presented in x-z plane on Fig. 3. The
second interpolation is applied along the short axis, with 240
data points depicted as the curves in x-y plane in Fig. 3,
obtained from the 12 original data points. Finally, the third
interpolation step is applied along the long axis, generating
161 data points from the nine original data points and shown
in y-z plane in Fig. 3. In total 1 738 800 data points are
generated in this manner from the 1296 original data points
provided by CONTINUITY 6. Figure 4 depicts 165 000 data
points on the surface of the 3D canine heart model. The
interpolated grid is then utilized to obtain the predeforma-
tional and postdeformational positions of the tissue scatterers

FIG. 3. Smooth interpolated curves obtained along three sequentially ap-
plied interpolation directions, namely the short axis or x-y plane, long axis
or y-z plane, and along the cardiac wall or x-z plane �units for all coordinate
axes are in cm�.

FIG. 4. The interpolated cardiac surface with approximately 165 000 data
points for the 3D canine heart model, indicating the fine scale of the defor-
mations utilized in the ultrasound simulations �unit for all coordinate axes

are in cm�.
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within the cardiac wall, used to generate RF data as de-
scribed in Sec. V.

V. SCATTERER DISTRIBUTION IN THE 3D CANINE
HEART MODEL

In the next step we randomly distribute scatterers at a
sufficient number density to obtain Rayleigh statistics for the
ultrasound simulation. Note that these scatterers should be
constrained to lie within the walls of the canine heart model.
To ensure the random distribution of the scatterers without
clumping, we divide the canine heart model into 1 689 600
hexahedrons with 1 738 800 interpolated data points. The
scatterer number and, thereby, density are decided based on
the volume of the 1 689 600 hexahedrons, with the scatterers
randomly distributed within the hexahedrons. The canine
heart model contains tissue deformation information over
1.904 s with a 250 Hz temporal frame rate �two cardiac
cycles at 125 frames/cycle�. Finally, the movement of the
scatterers within the hexahedron is calculated based on spa-
tial relationships between the scatterers and the hexahedron
surface.

A relative shift occurs among the eight vertices of each
hexahedron with deformation. The deformation of individual
hexahedrons can be quite large when we estimate the move-
ment of the scatterers located within the hexahedron. To
evaluate the volume changes of individual hexahedrons and
to compensate for the deformation of the hexahedron for
scatterers location estimation, each hexahedron is divided
into six pyramids. The location of the scatterers within each
pyramid can be exclusively represented and computed using
the four vertices of the pyramid.

VI. ULTRASOUND SIMULATION PROGRAM

The ultrasound simulation program models the variation
of the ultrasound field produced by a transducer in the fre-
quency domain.47 The simulation program loads the canine
model parameters and ultrasound transducer parameters from
a binary input file. The backscatter coefficients of the tissue
types �cardiac muscle tissue� are also provided in the binary
input file. The pressure field, the number of beam lines, the
frequency step, and the number of frequency points are cal-
culated based on the dimensions of the cardiac model and
ultrasound transducer characteristics. The field pressure at
each frequency point and beam-steered angle for phased ar-
ray transducers are also calculated. The simulation program
outputs the ultrasound signal in the frequency domain. We
then utilize MATLAB �Mathworks, Natick, MA� to obtain the
time-domain band-pass RF data from the ultrasound simu-
lated data in the frequency domain. The raw RF ultrasound
data are obtained after applying the inverse fast Fourier
transform operator in MATLAB over several cardiac cycles.

All the traditional cardiac imaging views can be obtained
by appropriate placement of the transducer. For example,
placement of the transducer at the side of canine heart model
generates cross-sectional RF data or short axis views. A 1D
linear array transducer was modeled, consisting of

0.2�10 mm elements with a 0.2 mm center-to-center sepa-
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ration. Each acoustic beam was formed utilizing 32 consecu-
tive elements. The incident pulses were modeled to be
Gaussian shaped with an 8 MHz center frequency and an
80% bandwidth �full-width at half-maximum�. The speed of
sound in the canine model and ultrasound beam-forming was
set to 1540 m/s and the attenuation coefficient was

FIG. 5. Scatterer distribution scanned using the simulated transducer is show
the estimated displacement images are shown in column �c�. Data at four di
0, 0.124, 0.248, and 0.372 s�, where T denotes the time period for a cardiac
0.5 dB/cm.
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VII. SIMULATION RESULTS

The 3D canine heart model provides data over 2
heartbeats/s. We obtained a total of 125 RF frames over a
cardiac cycle under the 250 Hz temporal frame rate. The
linear array transducer is located at the top of 3D canine

column �a�, with the corresponding B-mode images obtained in column �b�;
t time instances that correspond to 0, T/4, T/2, and 3T/4, respectively, �i.e.,
e, respectively, over the cardiac cycle are presented.
n in
fferen
heart model along the x-y plane at z=0 cm. Figure 5 pre-
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sents the scatterer distribution, along with the corresponding
B-mode and tissue displacement images obtained at four dif-
ferent time instances over the cardiac cycle. These time in-
stances correspond to 0, T/4, T/2, and 3T/4, where T denotes
the period of a single cardiac cycle �i.e., 0, 0.124, 0.248, and
0.372 s, respectively�. Column �a� of Fig. 5 denotes the scat-
terer distribution scanned using the simulated transducer at
four different time instances within the cardiac cycle. The
corresponding B-mode images are shown in column �b� and
the estimated displacement images in column �c� of Fig. 5.

The 125 ultrasound RF echo signal frames generated over
a cardiac cycle were analyzed using the multilevel hybrid
method48 to compute both displacement and strain images.
The algorithm estimates frame-to-frame local displacements,
with B-Mode image data used for the first cross-correlation
step to estimate coarse displacements. The analysis window
size was 24 wavelengths �axial� by 15 A-lines �lateral�, with
a 66.67% overlap between successive windows. The second
correlation step uses 16 wavelength�11 A-line windows
with a 50% overlap. In a similar manner, the third correlation
step used an eight wavelength�seven A-line window with
a 50% overlap. Finally, the last �fourth� correlation step uses
a four wavelength� five A-line windows with a 50% over-
lap to obtain the fine displacement measurements shown in
Fig. 5�c�.

Observe the drift in the displacement estimates over the
cardiac cycle as the displacements are accumulated over con-
secutive frames. At the end of each cardiac cycle, the heart
wall should have zero accumulated displacement since the
heart muscle should return to its initial position.

Using this boundary condition and assuming that the bias
introduced is not dependent on the heart wall position within
the heart cycle, the displacement drift can be compensated
linearly within each heart cycle. Drift in the displacement
estimated are also observed in in vivo data collected on hu-
man patients.24 Column �c� in Fig. 5 present local displace-

FIG. 6. Index or numbering of the 11 ROI in the canine cardiac wall denoted
on a simulated ultrasound B-mode image.
ment images obtained using the multilevel hybrid method at
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the four different time instances described earlier in this sec-
tion.

The 11 different regions of interest �ROIs� marked in red
represent the corresponding location of the scatterers in the
scatterer distribution and B-mode images in Fig. 5. To quan-
titatively evaluate the deformation of the canine cardiac wall
from the ultrasound RF data, we compare actual scatterer
movement or deformation �obtained from FEA� to that esti-
mated from ultrasound RF data using the multilevel hybrid
method. The 11 ROI are indexed or numbered from 1 to 11
as shown in Fig. 6. We also compare the estimated strain of
ROIs to the strain calculated from actual cardiac wall move-
ment.

Note that the estimated axial displacements and strains
presented in Figs. 7 and 8, respectively, match the actual
scatterer deformations very well for all the 11 different ROI.
The curve shape of the estimated displacement and the actual
scatterer movements are almost identical as shown in Fig. 7.
The maximum accumulated estimation error of displacement
is around 0.4 mm equal to two wavelengths along the axial
direction for the assumed ultrasound sound speed of 1540
m/s and center frequency of 8 MHz. The maximum accumu-
lated estimation error for the displacement estimate is small,
considering that the window length �0.8 mm� and number of
frames �125 frames� over which the estimated displacement
was accumulated over the cardiac cycle. Figure 8 shows that
the estimated strain curve matches the ideal �FEA� strain
curve calculated from the actual scatterer movement even
through large errors in the amplitude are observed for some
ROI �for example, ROI 10�.

On the other hand, the estimated displacements and strain
along the lateral direction are significantly noisier than the
estimated displacements along the axial direction, as ex-
pected. The performance of lateral displacement estimation
for ROIs 8–11 is significantly worse when compared to other
ROI within the cardiac wall. Reasons for the poor displace-
ment estimation include the fact that ROIs 8–11 are located
below the focal region which is set at 4 cm. In addition, the
reduction in the amplitude of the ultrasound RF signal �due
to frequency dependent attenuation� and the larger beam
width of the ultrasound beam profile below the focus intro-
duce additional noise artifacts into the lateral displacement
estimate. Lateral strain estimation contains more artifacts
when compared to lateral displacements, as expected, since
local strain is computed from the gradient of the displace-
ment and small displacement noise artifacts are amplified in
the strain curves. The strain curves for ROIs 1–6, are quite
noisy even though they have similar shapes as the ideal FEA
strain curves. On the other hand, the strain curves for ROIs
7–11 are noisier when compared to the strain curves obtained
for ROIs 1–6 and are significantly different from the ideal
FEA strain curves. All of these ROIs are located at depths
deeper than the focus, where the ultrasound beam is broader.
The speckle texture in the B-mode image at these depths is
also larger than those observed at shallower depths. In addi-

tion, the amplitudes of the RF signal in these ROIs are lower
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due to attenuation, leading to lower sonographic signal-to-
nose ratios in these ROIs leading to the increased estimation
errors.

The actual and estimated axial and lateral strain images in
Fig. 9 are presented using the same color bar range for com-
parison. A 1% strain corresponds to a value of 0.01 on the
color bar. Positive values denote the compression of the
myocardium while negative values denote the relaxation or
expansion of the myocardial muscle. The estimated axial
strain image closely corresponds to the actual �FEA� axial
strain image. However, the estimated lateral strain image is
significantly noisy especially at deeper locations. The axial
strain distribution within the cardiac wall is nonuniform, as

FIG. 7. Quantitative comparison of the estimated displacement �solid line�
�dashed line� for the 11 ROI within the canine cardiac wall. The column on t
displacement, respectively.
expected. In addition, the top and bottom regions within the
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cardiac wall depict larger strain values when compared to the
strain values of the central region within the cardiac wall.

The first and second principal component strain images in
Fig. 10 are calculated from the axial, lateral, and shear strain
tensor images as described in a previous publication.49 Ob-
serve that both the actual first and second principal compo-
nent strain images are uniform and have larger strain values
when compared to the actual axial and lateral strain tensor
images �from the color bar�. Values of the first and second
principal component strain images are independent of the
angle and depth location relative to the center of the cardiac
wall. The estimated first and second principal component
strain images are also uniform within the cardiac wall with

the actual interpolated scatterer displacements obtained from CONTINUITY 6

ft denotes the axial displacement, while the right column presents the lateral

with
he le
higher noise levels when compared to the actual first and
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second principal component strain images. Most of the noise
artifacts are located around the bottom of the cardiac wall
�deeper locations�, which are introduced by the noise arti-
facts present in the estimated lateral strain and shear strain
images at the same location.

VIII. DISCUSSION AND CONCLUSION

In this paper, a 3D FEA based canine cardiac mechanics
model is utilized to generate simulated ultrasound RF data.
The 3D canine heart model is based on the cardiac deforma-
tion and motion obtained from the Cardiac Mechanics Re-
search Group, UCSD. A nonlinear 3D interpolation was uti-

FIG. 8. Quantitative comparison of the estimated strain �solid line� with the a
model �dashed line� for the 11 ROI within the canine cardiac wall. The colu
strain, respectively.
lized to generate smooth cardiac structure at the resolution
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required to incorporate ultrasound scattering to generate
backscattered ultrasound echo signals. We utilize a scatterer
number density necessary to generate Rayleigh scattering
statistics, commonly associated with ultrasonic backscattered
signals.50 Other investigators have also reported on the pres-
ence of non-Rayleigh first-order statistics in the backscat-
tered signals from normal myocardium.51 These scatterers
are positioned within the cardiac wall and are free to move/
deform over the entire cardiac cycle. The 3D movement of
the scatterers based on the deformation of the cardiac wall,
combined with the ultrasound simulation program, is utilized
to generate 3D ultrasound RF data at high digitization sam-
pling rates and at temporal frame rate provided by the

strain calculated from actual displacements obtained from CONTINUITY 6 FEA
the left denotes the axial strain, while the right column presents the lateral
ctual
mn on
CONTINUITY 6 model. These temporal and full-field RF frame



5884 H. Chen and T. Varghese: Three-dimensional canine heart model for cardiac elastography 5884
FIG. 9. Comparison of the actual and estimated axial and lateral strain tensor images obtained using the multistep 2D cross-correlation method using simulated
ultrasound RF data obtained using the 3D canine heart model. The strain images depicted include the �a� actual axial strain tensor, �b� estimated axial strain
tensor, �c� actual lateral strain tensor, and �d� estimated lateral strain tensor images, respectively.
FIG. 10. Comparison of the first and second principal component strain images obtained from the actual displacement and estimated displacements obtained
using the multistep 2D cross-correlation method using the simulated ultrasound RF data from the 3D canine heart model. The strain images shown include the
�a� actual first principal component strain image, �b� estimated first principal component strain image, �c� actual second principal component strain image, and

�d� estimated second principal component strain image.

Medical Physics, Vol. 37, No. 11, November 2010
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rates are significantly higher than that provided/available
with current clinical scanners.

We then utilize the 2D multilevel hybrid method based on
RF data to estimate the displacement and the strain along
both the axial and lateral directions to compare the estimated
displacement to the actual movement of the scatterers. The
estimated displacement and strain obtained compare reason-
ably to the actual scatterer movement and the strain calcu-
lated from actual deformation. The estimated axial and lat-
eral displacement and strain can be converted to radial,
circumferential, or longitudinal strain with corresponding
projections obtained using principal component analysis. Our
techniques and strain estimation algorithms provide displace-
ment curves with high resolution for the analysis of cardiac
function. The 3D FEA canine heart model coupled with the
3D ultrasound simulation can also be utilized for evaluating
newer 3D strain imaging algorithms required for ultrasound
cardiac strain imaging.

We also present results using principal component analy-
sis techniques along cardiac parasternal short axis views.
Principal component analysis techniques provide angle inde-
pendent strain images useful for clinical diagnosis.
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