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Elastography or elasticity imaging techniques typically image local strains or Young’s modulus
variations along the insonification direction. Recently, techniques that utilize angular displacement
estimates obtained from multiple angular insonification of tissue have been reported. Angular dis-
placement estimates obtained along different angular insonification directions have been utilized for
spatial-angular compounding to reduce noise artifacts in axial-strain elastograms, and for estimating
the axial and lateral components of the displacement vector and the corresponding strain tensors.
However, these angular strain estimation techniques were based on the assumption that noise
artifacts in the displacement estimates were independent and identically distributed and that the
displacement estimates could be modeled using a zero-mean normal probability density function.
Independent and identically distributed random variables refer to a collection of variables that have
the same probability distribution and are mutually independent. In this article, a modified least-
squares approach is presented that does not make any assumption regarding the noise in the angular
displacement estimates and incorporates displacement noise artifacts into the strain estimation
process using a cross-correlation matrix of the displacement noise artifacts. Two methods for
estimating noise artifacts from the displacement images are described. Improvements in the strain
tensor �axial and lateral� estimation performance are illustrated utilizing both simulation data ob-
tained using finite-element analysis and experimental data obtained from a tissue-mimicking phan-
tom. Improvements in the strain estimation performance are quantified in terms of the elastographic
signal-to-noise and contrast-to-noise ratios obtained with and without the incorporation of the
displacement noise artifacts into the least-squares strain estimator. © 2008 American Association
of Physicists in Medicine. �DOI: 10.1118/1.2905024�
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I. INTRODUCTION

Elastography or elasticity imaging techniques that image the
local stiffness properties of tissue are relatively new tech-
niques for noninvasive investigation of tissue mechanical
properties.1–9 In conventional elastographic imaging, tissue is
deformed using a quasistatic compression, with pre-and post-
compression radio-frequency �rf� data frames acquired. Lo-
cal strains are computed from the gradient of the displace-
ment field along the axial direction between the pre- and
postcompression echo signal frames. Local strain images are
interpreted based on the fact that stiffer tissues deform less
than softer tissues under identical compressional forces and
similar boundary conditions, thereby providing a relative
comparison of the stiffness variations in tissue.

Local tissue displacements along the beam direction could
be estimated using classical time delay estimation tech-
niques. Thus, strains along the insonification direction, which
is typically along the ultrasound beam direction, are esti-
mated. Spatial-angular compounding for elastography was
also recently introduced to reduce noise artifacts in elasto-

grams, by averaging multiple strain estimates around the
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same region of interest �ROI� acquired from different insoni-
fication angles.10,11 The noise artifacts present in the dis-
placement estimate include jitter and peak-hopping artifacts.
Signal decorrelation artifacts due to nonuniform and/or large
applied compressions leading to out-of-plane motion may
also be present. In addition, reduction in the ultrasound
signal-to-noise ratio due to attenuation and geometric distor-
tion due to beam steering may also be present. Our approach
reduces noise artifacts due to the signal processing algo-
rithm, peak hopping, decorrelation, and increased nonstation-
ary noise due to the applied compression. Our results dem-
onstrate the improvement in the elastographic signal-to-noise
ratio �SNRe� and elastographic contrast-to-noise ratio
�CNRe� obtained with angular compounding. We have also
demonstrated angular compounding methods that do not re-
quire the incompressibility assumption.12

In addition, axial and lateral components of the displace-
ment vector can also be estimated from the angular displace-
ments obtained. Estimation of lateral and shear strains pro-
vides useful information for clinical diagnosis regarding

10–15 10,11
lesion mobility assessments. Techavipoo et al. previ-
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ously described a least-squares method to reduce noise in the
axial strain image and for the estimation of lateral strains at
different angular insonifications using a phased array trans-
ducer. A similar analysis using a linear array transducer with
electronic beam steering was also presented by Rao and
Varghese.12,14

However, both angular compounding and lateral strain es-
timation techniques introduced above assume that the noise
in the angular displacement estimates can be modeled using
a zero-mean normal probability density function and that the
displacement noise artifacts are independent and identically
distributed �i.i.d.�. In this article, we describe a modified and
improved least-squares method for the estimation of the axial
and lateral strains from the angular displacement data that
does not make any assumptions regarding displacement
noise artifacts. This is done by utilizing a cross-correlation
matrix that incorporates the impact of the displacement noise
artifacts into the modified least-squares algorithm. We also
present two methods that can be utilized for estimating the
displacement noise artifacts from estimated displacement im-
ages.

In this article, we present improved displacement �axial
and lateral� vector and strain �axial and lateral� tensor esti-
mation performance utilizing both ultrasound simulations
and experimental data obtained from tissue-mimicking �TM�
phantoms, using the modified least-squares method. Im-
provements in the strain estimation performance are quanti-
fied in terms of the SNRe and CNRe obtained with and with-
out the incorporation of the displacement noise artifacts into
the least-squares strain estimator.

II. THEORY

II.A. Least-squares method for angular compounding

The quasistatic compression or mechanical stimulus for
elastography is applied along the z-axis, also referred to as
the axial direction. The lateral direction or x-axis is defined
as the direction orthogonal to the axial direction and located
within the imaging plane. Consider the motion tracking of an

actual displacement vector d� at point O in space observed
using a 1D linear array transducer with beam steering as
shown in Fig. 1. Let u�� denote the unit vector along the
A-line or insonification direction for the B-mode or rf data
frame with a beam angle � that passes though point O. The

dot product p� between d� and u�� can be written as

p� = d� · u�� = dz cos � + dx sin � , �1�

where dz and dx are components of the displacement vector d�

in the z and x directions, while cos � and sin � are the com-
ponents of the unit vector u�� in the z and x directions, re-
spectively. Let q� be an observation of the displacement vec-

tor d� obtained using the pre- and postcompression rf data
obtained along the � beam insonification direction for the
motion vector u��. This observed displacement can be written

as
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q� = dz cos � + dx sin � + n�, �2�

where n� denotes the noise in the observations of the angular
displacement estimate. In ultrasound elastography, q� de-
notes the displacement estimate obtained using cross corre-
lation between the overlapped and gated windows of the pre-
and postcompression rf echo signals along the � insonifica-
tion direction. Techavipoo et al.11 have modeled the errors in
the displacement estimates as randomly distributed additive
Gaussian white noise.

Local tissue displacements are estimated using multiple
angular beams at different insonification angles passing
through point O, with each insonification angle providing a
single observation of the displacement. Thus, for multiple
insonification angles, let u��i

denote the motion vector along
the A-line at beam angle �i passing through point O for i
=1,2 , . . . ,m, where m is the total number of insonification
angles. In a similar manner n�i

is the noise in the observation
at angle �i. Rewriting these equations in a matrix form, we
obtain

q� = Ad� + n� , �3�

where

q� = �
q�1

q�2

]

q�m

� ,

A = �
cos��1� sin��1�
cos��2� sin��2�

] ]

cos��m� sin��m�
� ,

d� = �dz � ,

FIG. 1. Schematic diagram illustrating the tracking of the actual displace-

ment �vector d̄� at a point O in the angular displacement field.
dx
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n� = �
n�1

n�2

]

n�m

� , �4�

where d� denotes the axial and lateral displacement compo-
nents of the displacement vector associated with the ob-

served angular displacement q� to be estimated. Now, let d̃
denote the displacement vector estimated from the angular
observation data q� . The squared error between the estimated

displacement d̃ and the measurement q� can be expressed as

e = 	q� − Ad̃	2 = �q� − Ad̃�T�q� − Ad̃�

= q�Tq� − q�TAd̃ − d̃TATq� + d̃TATAd̃ . �5�

To minimize the squared error in Eq. �5�, the first derivative

of e with respect to the estimated displacement d̃ should be
equal to zero,

�e

� d̃
= − 2ATq� + 2ATAd̃ = 0. �6�

Finally, the least-squares solution �LS� obtained by
Techavipoo et al.11 is given by

d̃ = �ATA�−1ATq� = �ATA�−1AT�Ad� + n̄� = d� + Kn� , �7�

where

K = �ATA�−1AT = �k�z

k�x
� ,

k�z = �kz1
kz2

¯ kzm� , k�x = �kx1
kx2

¯ kxm� ,

where ��i
is the standard deviation of the noise n�i

in the
angular displacement estimates. The displacement estimate
along the z or axial direction can be written as

d̃z = dz + nz, �8�

nz = 

i=1

m

kzi
n�i

, �9�

�z =�

i=1

m

kzi

2 ��i

2 , �10�

where �z is the standard deviation of the displacement noise
after the least-squares minimization to obtain the component
of the displacement vector along the z direction. The dis-
placement noise nz is a linear combination of the noise n�i

in
each angular displacement estimates as shown in Eq. �9�.
Therefore, �z is given by a function of kzi

and ��i
as shown

in Eq. �10�. In a similar manner, the displacement estimate
along the x or lateral direction is given by

˜
dx = dx + nx, �11�
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nx = 

i=1

m

kxi
n�i

, �12�

�x =�

i=1

m

kxi

2 ��i

2 , �13�

where �x is the standard deviation of the displacement noise
after the least-squares minimization to obtain the component
of the displacement vector along the x or lateral direction. In
a similar manner, �x is given by the function of kxi

and ��i
shown as Eq. �13�.

We utilize linear interpolation for image registration of
the angular displacement data to a Cartesian spatial grid con-
structed for the zero-angle displacement data. Since angular
displacement images at different insonification angles have
different pixel grid locations, bilinear interpolation is utilized
to register the angular displacement estimates. Under the as-
sumption that the angular displacement images are locally
smooth, linear interpolation can be used to interpolate angu-
lar observations onto pixels of the zero-angle grid.

The LS method to estimate the displacement vectors from
the angular displacement data is an optimal solution for the

value of d� only when the noise in the angular displacement
estimates follow a Gaussian distribution and are i.i.d. random
variables in the observation at each angle �i. However, the
noise artifacts in the tissue displacement estimates obtained
using cross-correlation analysis between the overlapped win-
dows of pre- and postcompression rf echo signals, although
they follow a Gaussian distribution,11 are not i.i.d. The noise
artifacts are not i.i.d. since they increase with insonification
angle,11 as depicted in the angular elastograms. This increase
in noise is due to the compression direction being along the
0° insonification angle, while displacement estimations are
performed along the � insonification direction �the noise in-
creases with an increase in ��.11 In addition, the largest com-
ponent of the axial displacement would lie along the 0° in-
sonification direction. For all other insonification angles the
angular displacement contains components of both axial and
lateral displacements, with the axial component reducing
with an increase in the angle and the lateral displacement
being maximized at a 90° insonification angle, respectively.
This aspect is clearly illustrated in Fig. 1, which presents the
direction of compression and the components of the dis-
placement vector. An illustration of the increased noise arti-
facts in the displacements obtained along each beam-steered
angle �i and their variability at each angle are illustrated in
Sec. III.

II.B. Modified and improved least-squares method
for non-i.i.d. noise

Derivation of the modified least-squares algorithm when
the noise artifacts are no longer i.i.d. is described below. We
illustrate that, if the cross-correlation matrix of the noise at
each angle �i can be calculated, the optimal solution for the

value of the displacement vectors d� can be obtained using the

LS algorithm.
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Let Cn denote the cross-correlation matrix with the non-
i.i.d. noise artifacts n� along different angular insonification
directions. The matrix Cn is a full-rank symmetric matrix.
The non-i.i.d. noise n� can be expressed as a product of inde-
pendent identically distributed Gaussian noise with zero
mean and unit variance and a matrix B that accounts for the
non-i.i.d. nature of the noise artifacts �see Appendix A for
details� as shown below:

n� = Bn�gd, �14�

where n�gd denotes the zero-mean i.i.d. and Gaussian distrib-
uted noise, and the matrix B is obtained from the relationship
Cn=BBT. The details regarding the construction of matrix B
from the noise cross-correlation matrix Cn are described in
Appendix A. Equation �3� relating the angular displacement
observations to the actual orthogonal components of the dis-
placement vector can now be rewritten as

q� = Ad� + n�gd, �15�

B−1q� = B−1Ad� + B−1Bn�gd = B−1Ad� + n�gd = Dd� + n�gd. �16�

In a similar manner as illustrated in Eqs. �3�–�7�, the esti-
mated displacement vectors are given by

d̃ = �DTD�−1DT�B−1q��

= ��B−1A�T�B−1A��−1��B−1A��TB−1�Ad� + n��

= d� + Kn� , �17�

where D=B−1A and K= �DTD�−1DTB−1.
Equation �17� provides orthogonal displacement vector

estimates with non-i.i.d. noise artifacts when compared to
Eq. �7�, where the noise artifacts in the displacement esti-
mates have to be i.i.d. and follow a Gaussian distribution.
The solution provided in Eq. �17� represents a general pur-
pose solution for the estimation of orthogonal displacement
vectors from the angular displacement observations. Figure 2

FIG. 2. Flowchart of the least-squares method that incorporates the cross-
correlation noise matrix.
presents a flow chart of the improved general purpose least-
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squares method that improves the accuracy of displacement
estimation by utilizing an estimated noise covariance matrix.
The following subsection present methods that can be uti-
lized to estimate the noise properties and thereby the cross-
correlation or covariance noise matrix of the local displace-
ment field.

II.C. Noise estimation from the displacement field

Noise artifacts in the tissue displacement field can be cal-
culated if the exact noise-free displacement fields are avail-
able �for example with finite-element analysis�. However, the
actual noise-free displacement fields are generally not avail-
able in practice. Noise artifacts in the displacement field,
however, can be estimated for uniformly elastic media from
the standard deviation or variance of the displacement esti-
mates for a known applied compression under specified
boundary conditions. However, for inhomogeneous media,
estimation of the noise artifacts is significantly more diffi-
cult. Methods to estimate the noise artifacts are therefore
essential for the computation of the noise covariance matrix.
In this article, we present two different methods that can be
utilized to estimate the noise artifacts from tissue displace-
ment estimates. The performance of both these methods will
be evaluated experimentally using a uniformly elastic tissue-
mimicking phantom.

A uniformly elastic phantom with a known applied com-
pression and under slip boundary conditions is utilized to
generate displacement and strain images. The actual dis-
placement p� for a specific insonification angle � of the uni-
formly elastic phantom is continuous for a uniform applied
compression, even through the value of the displacement
vector p� depends on its location within the phantom. In-
creased lateral displacements occur in regions away from the
axis of compression �typically along the phantom center�,
which are observed toward the edges of the displacement and
strain images as increased signal decorrelation artifacts.16

The derivative of the displacement with respect to z and x
�axial and lateral� coordinates is also continuous since the
local strain in a uniform phantom is continuous under a con-
stant applied compression. Therefore, all the angular obser-
vations q� can be regarded as data points on a smooth angu-
lar displacement curve that is corrupted with the additive
Gaussian noise. The first method proposed for noise estima-
tion uses a second-order polynomial fit to reconstruct the
smooth curve in the presence of the angular displacement
observations. The noise artifacts can be estimated from the
difference between the reconstructed smooth curve and ac-
tual estimated angular displacement values.

The second method utilizes a two-dimensional adaptive
Wiener filter to estimate noise artifacts in the displacement
field. This method reduces the entire displacement image
into a number of smaller blocks and estimates noise in the
selected blocks with identical value.17 Adaptive Wiener fil-
tering methods described by Ozkan et al.18 and Olsen17 are
potentially efficient methods for estimating noise in the dis-
placement image. The Wiener filter is a mean-square error

�MSE�, i.e., an optimal stationary linear filter for images de-
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graded by additive noise and blurring artifacts. However, the
application of the Wiener filter requires the assumption that
the image and noise are second-order stationary. The Wiener
filter works very well when the noise is constant power �i.e.,
white�, such as Gaussian noise.19 Adaptive Wiener filtering,
however, is more selective than the polynomial curve-fitting
method, preserving details and other additional high-
frequency content within the image, which are present in
inhomogeneous tissue. In this article, both of these methods
are evaluated to estimate noise in the displacement image.

III. SIMULATION RESULTS

III.A. Method

In this section we evaluate the performance of both the
noise estimation methods using a simulated numerical phan-
tom constructed using a commercial finite-element analysis
�FEA� package ANSYS �ANSYS Inc., Pittsburgh, PA� and an
ultrasound simulation program developed in our laboratory.20

A uniformly elastic phantom with dimensions of 60�60
�10 mm3 was meshed using the FEA program. The phan-
tom was compressed using a uniform external deformation
of 0.5% of the phantom height, after precompression incre-
ments of 1%, 1.5%, and 2%, respectively �the exact precom-
pression increment utilized is described in the figure captions
and the description of each figure� under slip boundary con-
ditions using the FEA program and the corresponding dis-
placement field obtained.

Pre- and postcompression ultrasound radio-frequency
echo signals were then obtained using the frequency-domain
ultrasound simulation program.20 A linear array transducer
was modeled that consisted of 0.1�10 mm elements with a
0.1 mm center-to-center separation. Each acoustic beam was
formed using 64 consecutive elements. The incident pulses
were modeled to be Gaussian shaped with a 5 MHz center
frequency and an 80% bandwidth �full width at half-
maximum�. The speed of sound in the simulation was 1540
m/s, and the attenuation coefficient was set to 0.5 dB/cm/
MHz. Tissue scatterers were modeled using 100 �m radius
polystyrene beads, which were randomly distributed in the
numerical phantom at a sufficient number density to obtain
Rayleigh statistics. The postcompression rf data were ob-
tained by incorporating the displacement field obtained using
FEA analysis to displace the scatterer positions in response
to the modeled mechanical stimuli described above. The
simulated pre- and postcompression echo signals with differ-
ent beam-steering angle were obtained and utilized to esti-
mate noise artifacts in the displacement image.

Local displacements between the pre- and postcompres-
sion rf data are estimated using a 1D normalized cross-
correlation method. Displacement estimates are obtained
from the shift in the peak of the normalized cross-correlation
function. A rectangular gated window length of 3 mm with a
75% overlap between the data segments was utilized to ob-

tain local displacement estimates.
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III.B. Results

A comparison of the standard deviation in the displace-
ment estimates obtained using an adaptive Wiener filter and a
second-order polynomial fit along with the actual standard
deviation of the displacement field in the uniformly elastic
phantom is illustrated in Fig. 3. The noise estimation for all
the methods described above is performed in a 50
�50 mm2 region located at the center of the phantom. The
applied compression in the phantom was 0.5% of its height
along with a 2% precompression increment. Since a uni-
formly elastic phantom was modeled with a specified applied
compression, the standard deviation of the displacement es-
timates can be directly computed, and is plotted as the “ac-
tual standard deviation” as illustrated in Fig. 3. The displace-
ment field of the uniformly elastic phantom increases
linearly with depth to provide a fairly constant strain due to
the applied compression. Since we utilize a linearly elastic
phantom, and the applied compression is uniform, we can fit
and remove the linear trend from the displacement estimates
to obtain the actual standard deviation of the displacement
estimates.

Both the adaptive Wiener filter and the second-order poly-
nomial fit provide estimates of the displacement noise or
standard deviation with a smaller value when compared to
the standard deviation of actual errors in the estimated dis-
placement. The adaptive Wiener filter underestimates the
standard deviation of the displacement noise when compared
to the second-order polynomial fit. However, the standard
deviation of the displacement errors obtained with all the
methods increases with an increase in the beam-steering
angle as illustrated in Fig. 3. The standard deviation curve
relative to the beam-steering angle shows a similar trend for
all the methods. Therefore, both of these methods can be
used to estimate the noise level of the displacement estimates

FIG. 3. Standard deviation of the displacement estimates for the simulated
uniformly elastic phantom. Both the adaptive 2D Wiener filtering and
second-order polynomial fit methods are utilized to estimate the noise arti-
facts. The actual displacement errors at different insonification angles �i are
also presented as a comparison to the displacement noise estimated using the
two methods described above. The applied compression was 0.5% of the
phantom height along with a 2% precompression increment.
relative to the beam steering angle. These methods are useful
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since they can be utilized to estimate displacement noise
artifacts in inhomogeneous phantoms or biological tissue
where the actual standard deviation of the displacement es-
timates are more difficult to estimate.

Figure 4 presents a histogram of the displacement errors
�standard deviation� obtained using a 2D 7�7 pixel adaptive
Wiener filter for different beam-steering angles. Observe that
the distributions of the displacement noise obtained at differ-
ent insonification angles �i are not identical, with the spread
in the noise artifacts increasing with beam-steering angle.
The noise at each insonification angle �i can be fit to a
Gaussian distribution with a zero mean. However, the vari-
ance or standard deviation of the Gaussian distribution in-
creases with an increase in the beam steering or insonifica-
tion angle. This result illustrates the non-i.i.d. nature of the
displacement noise artifacts for the estimation of angular
strain estimates, which are also corroborated by the experi-
mental results in the next section.

IV. EXPERIMENTAL RESULTS

IV.A. Method

A uniformly elastic tissue-mimicking �TM� phantom with
dimensions of 90�90�90 mm3 was used for experimental
validation.21 The Young’s modulus of the TM material was
30 KPa measured using the ELF 3200 mechanical testing
system �EnduraTEC, Minnetonka, MN� in our laboratory.
The TM material for the phantom consists of gelatin with a
suspension of microscopic safflower oil droplets. The
Young’s modulus of the TM material reduces with an in-
crease in the concentration of the safflower oil droplets, and
thimerosal is utilized as the preservative.21

The TM phantom was immersed in a safflower oil bath
and scanned using a real-time clinical Siemens Antares Ul-
trasound Scanner �Siemens Medical Solutions USA, Inc., Ul-
trasound Division, Issaquah, WA�, using a linear array trans-
ducer �VFX 9–4� with a center frequency of 8.99 MHz and
70% bandwidth. A single transmit focus was set at a depth of
4 cm in the phantom with dynamic focusing on receive. The
linear array transducer provided 360 A-lines within a single

FIG. 4. Histogram of the estimated displacement noise artifacts at different
insonification angles �i obtained using the simulated uniformly elastic
phantom.
rf data frame at a 40 MHz sampling rate. The rf data were
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acquired using the Axius direct ultrasound research interface
�URI� on the scanner and transferred to a personal computer
for off-line analysis

A compression plate with a rectangular slot that matches
the transducer face was mounted on a linear translation stage
driven by a computer-controlled stepper motor. The com-
pression plate was larger than the phantom surface, and pro-
vides a uniform compression of the phantom. Echo signals
were acquired originating from the top of the phantom to a
depth of 5 cm before and after an axial applied compression
of 0.5%, 1%, 1.5%, and 2% of the phantom height, respec-
tively. An initial precompression of 3 mm �3.33%� was ap-
plied to ensure proper contact between the compression plate
and the phantom. The placement of the phantom in the saf-
flower oil bath also provides a thin film of oil on the top and
bottom surfaces of the phantom to ensure slip boundary con-
ditions. Angular radio-frequency data frames are acquired
before and after compression using beam steering over in-
sonification angles of �20° in 1° increments. The entire ex-
periment was repeated ten times at different locations on the
phantom to obtain independent rf data realizations to obtain
statistically significant results.

IV.B. Results

Angular rf pre- and postcompression data frames were
analyzed using the 1D normalized cross-correlation method
using a 12-wavelength �2.1 mm� rectangular gated window
with a 75% overlap between subsequent windows. Figure 5
presents a histogram of the displacement errors in the angu-
lar displacement estimates using a 2D 7�7 pixel adaptive
Wiener filter. Note that the distributions of noise at the dif-
ferent insonification angles �i are not identical, even though
the noise at each insonification angle �i can be fitted to a
Gaussian distribution with a zero mean. The variance of
Gaussian distribution increases with an increase in the in-
sonification angle in a similar manner as illustrated in the
simulation results in Fig. 4. Similar results as those shown in
Fig. 5, are obtained when the second-order polynomial fit is

FIG. 5. Histogram of estimated displacement noise artifacts at different in-
sonification angles �i obtained using a uniformly elastic TM phantom. The
displacement noise was estimated using the 2D adaptive Wiener filtering
method.
utilized to estimate displacement noise artifacts.
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The standard deviation or displacement noise in the angu-
lar displacement images obtained at different insonification
angles calculated using the two noise estimation techniques
are illustrated in Fig. 6. Results obtained using the second-
order polynomial curve fit are shown in Fig. 6�a�, while Fig.
6�b� presents results obtained using the 7�7 pixel 2D adap-
tive Wiener filtering method, respectively. The data sets in-
clude three cases with different precompression levels as
shown in Fig. 6. Note that the standard deviation of the es-
timated displacement noise using the second-order polyno-
mial fit is almost two times that obtained using adaptive
Wiener filtering for the same angular displacement data set.

This result is consistent in that adaptive Wiener filtering
preserves small details and other high-frequency content in
the displacement image. Note also that the standard deviation
curves relative to the insonification angle �i from the same rf
data with the different noise estimation methods have similar
shapes. The standard deviation increases linearly with in-
creases in the insonification angle �i in most cases. Since the
noise in the displacement estimate increases with angle, it
does not satisfy the i.i.d. property for the LS algorithm.
These simulation and experimental results demonstrate that

(a)

(b)

FIG. 6. Standard deviation of the estimated displacement noise artifacts at
different insonification angles denoted by �i. The standard deviation of the
displacement noise is plotted for an applied compression of 0.5% and for
different precompression values of 1%, 1.5%, and 2%, respectively. The
displacement noise shown in �a� is estimated using a second-order polyno-
mial curve fit, while that in �b� is estimated using a 7�7 2D adaptive
Wiener filter.
the two noise estimation algorithms can be utilized to esti-
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mate displacement noise artifacts especially in inhomoge-
neous media enabling the utilization of the modified LS al-
gorithm described in this article. The modified LS algorithm,
described in the next section, utilizes the estimate of the
noise artifacts to derive a cross-correlation or covariance
noise matrix to improve the accuracy of displacement esti-
mation.

IV.C. The modified least-squares method for strain
estimation

Ultrasound pre- and postcompression angular radio-
frequency data on TM phantoms are obtained in a manner
similar to that described in the previous section. A uniformly
elastic phantom is utilized to obtain data to compute the
mean and variance of the resulting strain image and to cal-
culate the corresponding elastographic SNRe obtained. A
single inclusion TM phantom with dimensions of 90�90
�90 mm3 with a 10 mm diameter cylindrical inclusion at a
35 mm depth is also utilized to obtain a quantitative com-
parison of the CNRe for the two LS methods.21 The inclusion
is 3 times stiffer than the background. Each experiment was
repeated ten times with data acquisition performed at differ-
ent location in the phantom as described previously. Finally,
the mean and the standard deviations of the SNRe, and CNRe

parameters obtained are compared for the two LS methods.
Figures 7�a� and 7�b� present plots of the SNRe along the

axial and lateral direction versus the applied compression for
both the LS methods. Error bars in the plots shown in Figs.
7–9 with the short, medium, and long bars on the top corre-
spond to the standard LS, LS plus second-order polynomial,
and LS plus 2D Wiener filter, respectively. Note the signifi-
cant improvement in the SNRe obtained using the improved
LS method, where the covariance noise matrix estimated us-
ing both the second-order polynomial fit and the 2D Wiener
filter have been utilized as shown in the figure. Observe that
for both the LS methods the SNRe reduces with applied com-
pression; however, for the LS method without noise estima-
tion the drop-off in the SNRe is significant. Both the methods
utilized for estimation of the displacement noise appear to
provide similar results for the variation in the SNRe with
applied compression. Figures 7�c� and 7�d� presents the
mean and the standard deviation of the improvement in the
SNRe along axial and lateral direction versus the applied
compression for both the LS methods. The modified LS
method shows significant improvement of the elastographic
SNRe along both axial and lateral directions. The improve-
ment is more significant when the applied compression is
larger than 1%.

In a similar manner, the variations in the CNRe obtained
using the inclusion phantom is presented in Figs. 8 and 9. As
mentioned in the previous section, a second-order polyno-
mial fit does not efficiently estimate noise in nonuniform
displacement data, so only the 2D Wiener filter was applied
to the data with the cylindrical inclusion to estimate noise.
The ROIs in the strain image corresponding to the inclusion
and the background that are utilized in the computation of

the CNRe are shown in Fig. 8. The strain images shown in
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Fig. 8 are obtained using an applied compression of 2% of
the phantom height. Both the LS methods use 41 sets of
radio-frequency data frames acquired before and after com-
pression using beam steering with insonification angles over
a �20° range with 1° angular increments. Figure 8 presents
the axial and lateral strain image using the modified LS
method with covariance noise estimation �Fig. 8�a�� and the
original method �Fig. 8�b�. Noise estimation was performed

(a)

(b)

(c)

(d)

(a)

(b)

FIG. 8. Diagram illustrating the ROI utilized in the axial strain image and
lateral strain image utilized to compute the CNRe estimate for the modified
LS method �a� and the original LS method �b�. The axial and lateral strain
images for the modified least-squares method were generated with noise

estimated using adaptive 2D Wiener filtering of the displacement estimates.
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using the 2D Wiener adaptive method since the phantom
with an inclusion was utilized in Fig. 8. However, for the 20°
maximum angle utilized in our experiment, Eqs. �1� and �2�
indicate that only limited information on the lateral displace-
ment dx is present in q�, the angular displacements estimated.
Therefore, the lateral strain images obtained contain addi-
tional noise artifacts. The trapezoidal region shown in Fig. 8
represents the region over which all the angular displacement
estimates are available and utilized to compute the axial and
lateral displacement vectors and subsequently the strain ten-
sors.

Figure 9�a� presents plots of the CNRe versus the applied
compression for the LS method with and without the Wiener
adaptive noise estimation. Note that the LS method with the
noise estimation improves the CNRe by about 0.35–0.89 dB
at the different applied compressions. Observe the reduction
in the CNRe for the strain image obtained using the regular
LS method without noise estimation with an increase in the
applied compression, while the CNRe estimates for the strain
image obtained using the LS method with noise estimation
remains fairly constant over all the applied compressions.
Figure 9�b� presents the mean and the standard deviation of
the improvement in the CNRe versus the applied compres-
sion for both the LS methods. The mean and standard devia-
tion is calculated using ten independent data sets.

V. DISCUSSION

In this article we demonstrate the impact of the non-i.i.d.
nature of the angular displacement noise artifacts for axial

FIG. 7. Plots of elastographic SNRe vs
the applied compression for both the
LS methods. Note that the improved
LS method that utilizes the noise esti-
mation performs significantly better
than the standard LS method. The
SNRe variation is plotted for the �a�
axial strain and �b� lateral strain esti-
mates. The mean and standard devia-
tion of the improvement were obtained
over ten independent experiments for
the �c� axial strain and �d� lateral strain
estimates.
and lateral strain estimation. In the earlier analysis,
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Techavipoo et al.10,11 had presented a least-squares method
to reduce noise in the axial strain image and the estimation of
lateral strains at different angular insonifications using a
phased array transducer. Estimation of the axial and lateral
strains from the angular displacement data was done using a
least-squares method that assumes a zero-mean Gaussian or
normal distributed probability density function with the noise
in the displacement estimates being i.i.d.

We show using both simulation and experimental results
that the probability density function of the displacement
noise at each insonification angle can be described by a
Gaussian density function with zero mean. However, the
variances of the displacement noise artifacts increase with
the ultrasound beam-steering angle, making the assumption
of i.i.d. noise in the previous analysis incorrect.

In this article, we introduce a modified least-squares tech-
nique that estimates the axial and lateral strain estimates after
compensating for the non-i.i.d. nature of the displacement
noise artifacts by incorporating a cross-correlation or covari-
ance noise matrix. Displacement noise artifacts are estimated
initially from the displacement estimates, using a second-
order polynomial fit and a 2D adaptive Wiener filter. The
cross-correlation matrix of the noise estimates are then incor-

(a)

(b)

FIG. 9. Plots of �a� CNRe variations vs the applied compression for both the
standard and improved LS method incorporating noise estimation. The adap-
tive 2D Wiener filtering method was utilized for displacement noise estima-
tion. The mean and standard deviation of the improvement in the CNRe

obtained using the modified LS method is shown in �b�.
porated into the modified least-squares algorithm to improve
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the strain estimation performance. Most of the computational
time with this algorithm is for the estimation of the angular
displacement, which takes 57 s for each pre- and postcom-
pression data set. Computation of all the angular displace-
ment data over the entire 41 angular insonification data sets
therefore takes 39 min and 15 s. Additional computational
aspects include interpolation of the displacement, estimation
of the noise content, displacement compounding, and least-
square strain estimation for a total of 47 min and 20 s for the
entire procedure. The modified least-squares algorithm takes
less than a second to estimate the noise level and calculate
the matrix K, shown in Eq. �17�, from the previously com-
puted 41 angular displacement frames. Comparison of the
two LS algorithms was performed on a PC with a 2.8 GHz
Pentium 4 CPU and 1 GB of RAM with the code developed
using MATLAB 7.1 software �The MathWorks, Natick, MA�.
We are, however, currently engaged in optimizing this pro-
cess by acquiring data over fewer angular insonification di-
rections by computing an optimal value of the insonification
angle, which could lead to similar values of SNRe in the
elastograms using 5–10 angular data sets.

In this article a 1D normalized cross-correlation algorithm
is utilized to estimate the angular displacements. The pro-
posed method estimates the noise level of the local angular
displacement and improves displacement vector estimation
using the modified LS algorithm. Two-dimensional displace-
ment estimation algorithms can also be utilized to estimate
angular displacement and can provide a better spatial reso-
lution along each insonification angle. However, displace-
ment noise artifacts present in the images would still not be
i.i.d., and the method proposed in this article can be applied
in a similar manner to improve displacement vector and
strain tensor estimation.

Simulation and experimental results demonstrate that the
modified least-squares algorithm with noise characterization
can significantly improve the SNRe and CNRe in both axial
and lateral strain tensor images, since the noise estimation
algorithm is applied to the displacement images that contain
fewer pixels when compared to the rf data, which also sig-
nificantly reduces the computational requirements of the
modified least-squares algorithm for strain estimation.

VI. CONCLUSION

In this article we demonstrate the impact of the non-i.i.d.
nature of the angular displacement noise artifacts relative to
different beam insonification angles. We propose the use of a
modified least-squares algorithm for angular strain estima-
tion that utilizes a cross-correlation or covariance noise ma-
trix that incorporates noise artifacts to further improve esti-
mation of displacement vector and thereby the strain tensor
components from the angular displacements. The method
proposed in this article can be applied to the general inho-
mogeneous elastographic imaging situation, by utilizing al-
gorithms such as the 2D adaptive Wiener filter to estimate
displacement noise artifacts. The modified least-squares al-
gorithm with noise characterization proposed in this article

can be utilized to improve both spatial angular compounding
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and lateral and shear strain estimation using the angular dis-
placement data. Lateral and shear strain estimation is gaining
importance, especially in the possible differentiation between
benign and malignant masses based on their bonding prop-
erties to surrounding healthy tissue.10–15 In addition, the re-
liability of Young’s modulus reconstruction also improves
with the utilization of all strain tensor �axial, lateral, and
elevational� components.22

The modified LS algorithm described in this article is a
general purpose algorithm that can be utilized with inhomo-
geneous strain distributions, as is generally the case with in
vivo and experimental data. The modified LS method de-
scribed in this article does not make any a priori assump-
tions regarding the noise content in the angular displacement
estimates, and is particularly applicable for clinical imaging
situations, where the displacement noise can be incorporated
into the strain estimation process using a cross-correlation or
covariance matrix. The proposed method for noise estimation
can also be utilized in conjunction with other displacement
estimation algorithms such as 2D or 3D cross-correlation or
block-matching algorithms. In addition, the 2D adaptive
Wiener filter utilized for noise estimation can be utilized for
the general elastography problem. The 2D adaptive Wiener
filter can be utilized to estimate the noise in the local dis-
placements values, thereby evaluating the reliability23 of the
strain estimates obtained from the pre- and postcompression
data sets.
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APPENDIX A: NOISE COVARIANCE MATRIX

Consider the noise n̄ with the cross-correlation matrix
Cn=E�n̄n̄T�. Cn is an N�N full-rank symmetric matrix.
There are N independent eigenvectors xi corresponding to the
N eigenvalues �i �i=1,2 , . . . ,N�,

Cnx̄i = �ix̄i,

x̄ix̄ j = �1 i = j

0 i � j
�i, j = 1,2, . . . N� . �A1�

Equation �A1� can be expressed by the matrix

CnX = X� ,

where

X = �x1 x2 ¯ xN� ,

� = �
�1 0 ¯ 0

0 �2 0

] �

0 0 �N

� . �A2�

Matrix � represents the canonical form of Cn, a diagonal
matrix with Cn’s eigenvalues along the main diagonal. Ma-

trix X denotes the modal matrix whose columns are the
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eigenvectors of Cn. Note that the operation on both XXT and
XTX yields an identity matrix. Therefore, Eq. �A1� can be
written as

Cn = X�XT = X��XT = �X���X��T = BBT, �A3�

where

� = �
��1 0 ¯ 0

0 ��2 0

] �

0 0 ��N

� ,

B = X� . �A4�

Now the noise n̄ vector can be expressed as a linear combi-
nation of N independent identically Gaussian distributed n̄gd

with zero mean and unit variance,

n̄ = Bn̄gd. �A5�

The cross-correlation matrix Cn of the noise is calculated by

Cn = E�n̄n̄T� = E��Bn̄gd��Bn̄gd�T� = BE�n̄gdn̄gd
T �BT = BBT.

�A6�

APPENDIX B: DEFINITIONS

1. Signal-to-noise ratio

The signal-to-noise ratio �SNRe� in elastography is a
quantity used to describe the noise properties of the strain
image. The SNRe is defined as24,25

SNRe =
ms

�s
, �B1�

where ms and �s denote the mean and the standard deviation
of estimated strain, respectively.

2. Contrast-to-noise ratio

The contrast to-noise ratio �CNRe� is a quantity that de-
termines the detectability of lesions.26 The CNRe for elastog-
raphy is defined as follows:26

CNRe =
2�eB − eI�2

�eB
2 + �eI

2 , �B2�

where eB and eI represent mean strain in the background and
inclusion, while �eB and �el represent standard deviation of

background and inclusion, respectively.
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