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In this article we investigate the generation of shear strain elastograms induced using a lateral shear
deformation. Ultrasound simulation and experimental results demonstrate that the shear strain elas-
tograms obtained under shear deformation exhibit significant differences between bound and un-
bound inclusions in phantoms, when compared to shear strain images induced upon an axial com-
pression. A theoretical model that estimates the decorrelation between pre- and postdeformation
radio frequency signals, as a function of extent of shear deformation, is also developed. Signal-to-
noise ratios of shear strain elastograms obtained at different shear angles are investigated theoreti-
cally and verified using ultrasound simulations on a uniformly elastic phantom. For the simulation
and experiment, a two-dimensinal block-matching-based algorithm is used to estimate the axial and
lateral displacement. Shear strains are obtained from the displacement vectors using a least-squares
strain estimator. Our results indicate that the signal-to-noise ratio �SNR� of shear strain images
increases to reach a maximum and saturates, and then decreases with increasing shear angle. Using
typical system parameters, the maximum achievable SNR for shear strain elastography is around 8
�18 dB�, which is comparable to conventional axial strain elastography induced by axial compres-
sion. Shear strain elastograms obtained experimentally using single inclusion tissue-mimicking
phantoms with both bound and unbound inclusions �mimicking cancerous masses and benign fi-
broadenomas, respectively� demonstrate the characteristic differences in the depiction of these
inclusions on the shear strain elastograms. © 2008 American Association of Physicists in Medi-
cine. �DOI: 10.1118/1.2825621�
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I. INTRODUCTION

Pathological changes in tissue generally correlate with
changes in tissue elastic modulus.1 Elastography, as a strain
imaging technique, has gained interest as a diagnostic tool
over the past decade.2–8 In this technique, local strains are
typically estimated along the axial direction corresponding to
the ultrasonic beam propagation axis by computing the gra-
dient of the tissue displacement following a uniaxial com-
pression. The mappings of such axial strains, referred to as
axial-strain elastograms, are usually utilized as a surrogate
for the tissue modulus distribution. Elastography has been
shown to be capable of tumor detection in breast9 and
prostate.10 However, some benign lesions, such as fibroad-
enomas in the breast, have similar modulus distributions as
infiltrating ductal carcinomas.11 Hence, axial strain imaging
alone may not provide sufficient information to assess the
malignancy of a detected lesion.

Some progress has been made in using elastography to
distinguish benign from malignant tumors. Garra et al.9 have
shown that discrepancies between the size of lesions on
sonograms and axial strain images may be a promising way
to distinguish benign from malignant lesions. Malignant le-
sions tend to be depicted as larger masses on axial strain
images than on sonograms, while benign lesions usually ap-
pear smaller or of the same size on sonograms as on the axial

9
strain images. As described in Garra et al., this discrepancy
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in size between benign fibroadenomas and malignant cancer-
ous lesions is probably due to axial strain images also depict-
ing regions around the tumor that have undergone desmo-
plastic reaction as stiffer regions reflecting the underlying
change9 that is not captured on the sonograms. Another sig-
nificant difference between fibroadenomas and cancers in-
volves a difference in binding to the surrounding tissues.9,12

Previous studies13,14 have shown that malignant breast tu-
mors typically have a stellate or spiculated appearance and
are firmly bound to the surrounding tissue through infiltra-
tion, whereas fibroadenomas �the most common benign
breast tumor� have smoother margins and are more loosely
bound to the surrounding tissue and in some instances may
be surrounded by a capsule.

Konofagou et al.,12 using axial compressions, have shown
that the shear strain estimates may provide supplementary
information on the bonding between the tumor and the sur-
rounding tissue characterizing different tissue elements based
on their mobility. However, the amount of shear strain ob-
tained under an axial compression, as presented in previous
work,12 is usually very small �on the order of 0.01 for a
1%–3% compression� and difficult to control. In addition,
shear strain elastograms of bound and unbound inclusions
may exhibit similar patterns due to the axial compression
applied. Figure 1 shows an example of shear strain images

calculated using finite element analysis �FEA� of a fully
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bound inclusion �top� and an unbound inclusion �bottom� in
a homogeneous background. The bound inclusion is used to
simulate a malignant tumor, with the spherical inclusion and
the background glued together in the FEA model. The un-
bound inclusion model is utilized to simulate an encapsu-
lated benign lesion with no adhesion between the spherical
inclusion and the surrounding background medium. Both the
spherical inclusions are three times stiffer than the back-
ground and the applied axial strain is 1%. Observe that the
shear strain patterns of the bound and unbound inclusions
have some differences, which, however, may be obscured in
the presence of noise artifacts, making it difficult to differ-
entiate between benign and malignant tumors in vivo.

In this study, we investigate shear strain elastograms
�SSEs� induced by a lateral shear deformation instead of an
axial compression. Although there are prior studies15,16 on
shear strain elastography induced by shear deformation, no
simulation or experimental results have been presented to
assess its ability for differentiating bound from unbound in-
clusions. Kumar et al.16 analyzed signal decorrelation in-
duced by shear deformation by assuming that the displace-
ment remained constant within the ultrasonic beam.
However, this assumption is valid only when the applied
deformation is small and the beam is relatively narrow. In
this article, a closed form expression is derived for the cor-
relation coefficient between pre- and postdeformation ultra-
sonic radio frequency �rf� signals. Signal decorrelation due to
shear deformation effects within the ultrasonic beam has also
been considered in this article. Noise performance of shear
strain estimates are discussed theoretically and verified using
ultrasound �US� simulations on a uniformly elastic phantom.
US simulation and tissue-mimicking �TM� phantom experi-

ments were also performed to demonstrate the feasibility and
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advantage of using shear strain images induced by a lateral
shear deformation to distinguish benign from malignant tu-
mors.

II. NOISE PERFORMANCE ANALYSIS

In conventional elastography, signal decorrelation noise,
due to the distortion of the echo signal as a result of the
applied axial compression, is a major source of error in the
local strain estimated.17–25 Similarly, SSEs induced by a
shear deformation also suffer from decorrelation between
pre- and postdeformation rf signals. The amount of shear
deformation is quantified by the lateral shear angle �, as
shown in Fig. 2. For large shear angles, the shear decorrela-
tion noise artifacts are significant. For the small shear angle,
however, the induced shear strain may be too small to pro-
vide useful information. Thus, it is important to choose an
optimal shear angle in order to achieve a SSE with a high
image quality. Many studies have been performed to inves-
tigate variations in spatial correlations with ultrasound

FIG. 1. Finite-element calculated im-
ages of ��a� and �d�� �dz /�x, ��b� and
�e�� �dx /�z, and ��c� and �f�� shear
strain=0.5��dz /�x+�dx /�z�, where dz

and dx are the displacements in the z
�axial� and x �lateral� directions, re-
spectively, for a fully bound inclusion
�top� and an unbound inclusion �bot-
tom� in a homogeneous background.
The applied axial strain was 1%.

FIG. 2. Schematic diagram illustrating the acquisition of pre- and postdefor-
mation rf signals with a shear angle �. The predeformation rf signals are
obtained from scatterers at position O1, while the postdeformation signals

are obtained from the corresponding scatterers at location O2.
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speckle pattern motion in medical ultrasonic images.26–33

Most of these prior studies were directed toward B-mode
image compounding or blood flow imaging, where the theo-
ries developed did not incorporate signal decorrelation
within finite gated windows, and were thus not suitable for
computing the correlation coefficient for shear strain imaging
induced by shear deformations.

To evaluate the performance of shear strain imaging, sev-
eral groups have proposed the estimation of the correlation
coefficient between the rf signals acquired before and after
the application of the shear deformation.15,16 Viola and
Walker15 derived the correlation coefficient with motion
compensation due to shear deformation. However, no ex-
plicit expression was provided and the theory was not veri-
fied using simulations or experiments. Kumar et al.16 devel-
oped an expression for the correlation coefficient that
depends on both the axial compression and shear deforma-
tion. Their expression was obtained by making an approxi-
mation based on their previous work22 derived for axial com-
pression analysis. In addition, optimal shear deformation has
not been discussed in the above articles. To investigate the
shear angle dependence on the SSE image quality, we derive
a theoretical model to estimate the correlation coefficient be-
tween pre- and postdeformation rf signal segments as a func-
tion of the shear angle. We also derive the signal-to-noise
ratio �SNR� for SSE. The theoretical results are verified us-
ing US simulations on a uniformly elastic phantom.

II.A. Correlation coefficient

Ultrasonic rf echo signals before and after the shear de-
formations are modeled by

s1�x,z� = P�x,z� � T1�x,z� ,

s2�x,z� = P�x,z� � T2�x,z� , �1�

where the subscripts 1 and 2 specify the pre- and postdefor-
mation echo signals obtained from an elastic tissue medium,
P�x ,z� is the pulse-echo point-spread function �PSF� of the
imaging system, and T�x ,z� denotes the tissue scattering
function. For this model it is assumed that the system is
linear and has a shift invariant impulse response which holds
within a small volume of interest �5�5 mm2� at the focus.34

The symbol � denotes the convolution operation. Here a
two-dimensional �2D� model is used because the ultrasound
beam in currently available transducers is much wider in the
elevational direction when compared to the lateral direction.
In addition, the elevational displacement is very small and
can be neglected for lateral shear deformation. Thus, the
scatterer movement in the elevational direction does not
cause significant loss of coherence in the echoes.

There are several models that define the T�x ,z� term. To
simplify the tissue model, we assume a large number of very
small inhomogeneities �Rayleigh scatterers� with respect to
the wavelength of the PSF �Ref. 20�

T1�x,z� = � �Ti���x − xi,z − zi� ,

i
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T2�x,z� = �
i

�Ti���x − xi − zi tan �,z − zi� , �2�

where ��x ,z� is the 2D Dirac or impulse function, �xi ,zi�
denotes the randomly distributed centers of each inhomoge-
neity, �Ti� is the echogenicity of each scatterer, and � is the
angle of shear deformation, as defined in Fig. 2.

The cumulative signal amplitude from scatterers at posi-
tion O1 �x01,z0� in the predeformation medium can be writ-
ten as26

s1 = �
i

�Ti��P1,i� exp�j�i� . �3�

The subscript i refers to an individual scatterer, �P� is the
magnitude of the pulse-echo PSF from the scatterers, and
exp�j�� represents the combined phase of �T� and �P�. The
phase factors in � are uniformly distributed over 2� rad
with zero mean. Here we assume narrowband signals for
simplifying the mathematical analysis. An illustration of this
concept is shown in Fig. 2. We establish our coordinates by
setting the bottom-left corner of the phantom as the origin.

A shear deformation is then applied to the medium along
the x direction, with the scatterers moving laterally with a
shear angle �. To maintain volume of the medium, axial dis-
placements would also be induced by the lateral shear defor-
mation. FEA simulations, which are described in Sec. IV,
show that the axial displacement induced is quite small and
only occurs at the lateral edges of the medium. Assuming
that the region of interest is located at the center of the me-
dium, axial displacements at the region of interest would be
close to zero and can therefore be ignored in our analysis.
Thus, tissue scatterers around O1 move to position O2 after
the shear deformation, as shown in Fig. 2. The postdeforma-
tion signal is generated from scatterers at position O2

�x02,z0�. The cumulative signal strength after the shear de-
formation can be written as

s2 = �
i

�Ti��P2,i� exp�j�i�exp�j��i� , �4�

where ��i is the phase difference between pre- and postde-
formation signals, which can be written as 4��R2,i

−R1,i� /�0, where �0 is the wavelength at the center frequency
and R1,i, R2,i are the distances from the ith scatterer to the
transducer for the pre- and postdeformation situations, re-
spectively,

R1,i = ��xi1 − x01�2 + �zi − h�2,

R2,i = ��xi2 − x02�2 + �zi − h�2, �5�

where x02=x01+z0 tan �, xi2=xi1+zi tan �, and h is the height
of the phantom. The cross correlation between the signals
acquired before and after deformation can be written as26

�s1s2
�	 = �

i

�Ti�2�P1,i��P2,i� exp�j��i� . �6�

The 2D PSF in the focal zone of each ultrasound beam of
a linear array transducer can be expressed in the following

form:
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�P�x,z�� = px�x�pz�z� , �7�

where px represents the lateral beam spread function and pz

represents the axial spread function. For a rectangular aper-
ture, for example, the lateral PSF for a pulse-echo response
at the focus or in the far field can be written as

px�x� = sin2��f0x�/��f0x�2, �8�

where f0=D /r�0, D is the effective transducer aperture, and
r is the focal distance, r=h−z0. If we assume that the ultra-
sound pulse transmitted by the transducer has a Gaussian
envelope with characteristic width 	z, then pz can be ex-
pressed as

pz�z� = exp�− z2/2	z
2� . �9�

For the ith scatterer, the lateral distances to the beam axis
for the pre- and postdeformation cases can be written as

l1,i� = xi − x01,

l2,i� = xi2 − x02. �10�

Similarly, the axial distances from the ith scatterer to the
center point are

l1,i� = l2,i� = zi − z0. �11�

Hence, the PSF for the ith scatterer can be written as

Pk,i = px�lk,i� �pz�lk,i� �, �k = 1,2� . �12�

Substituting Eq. �12� into Eq. �6�, and going to a continu-
ous representation, xi and zi become x and z and the summa-
tion becomes a 2D integral about x and z. Thus,

�s1s2
�	 = B�

/
�px�l1����pz�l1����px�l2����pz�l2��� exp�j���dxdz ,

�13�

where B� is a normalization factor. An analytical closed form
solution for the above equation is difficult to obtain. Thus, it
is necessary to either resort to numerical solutions or apply
approximations to simplify the expression in Eq. �13�.

To simplify the 2D integral in Eq. �13�, we utilize a
Gaussian envelope with characteristic width 	x, to model the
lateral PSF as shown

px�x� = exp�− x2/2	x
2� . �14�

Since only scatterers close to the region of interest contribute
to the signal, we can approximate the phase term as
exp�2�j�l2�

2− l1�
2� /�0�h−z0��. The correlation coefficient can

be computed as follows:


0 =
�s1s2

�	
��s1s1

�	�s2s2
�	

. �15�

Substituting Eqs. �9� and �14� into Eq. �13�, and then

plugging the result into Eq. �15�, we obtain
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0 = 
4�2	x
2	z

2 tan2 �

�0
2�z0 − h�2 +

	z
2 tan2 �

4	x
2 + 1�−1/2

. �16�

Equation �16� provides an expression for the correlation
coefficient between the pre- and postdeformation signals ac-
quired from the point of interest O1 and O2, respectively. For
elastographic processing, finite gated segments of the echo
signal are utilized. A gated data segment is generally selected
using a rectangular window. Generally, the same window is
used for both the pre- and postdeformation data segments.
Attenuation and focusing effects can be included in the win-
dow function w�t�, so that the intensity of s�t� can be taken to
be constant with depth. Thus, the correlation coefficient be-
tween the pre- and postdeformation data segments can be
computed by35


1,2 =
��t=t1

t2 w2�t�s1�t�s2
��t�	

���t=t1
t2 w2�t�s1�t�s1

��t�	��t=t1
t2 w2�t�s2�t�s2

��t�	�1/2 . �17�

The overall signal intensity obtained before and after the
shear deformation should be the same, provided that the dis-
tance between the transducer and sample volume remains
constant. The denominator in Eq. �17� becomes35

���t=t1

t2
w2�t�s�t�s��t�	��t=t1

t2
w2�t�s�t�s��t�	�1/2

= ��t=t1

t2
w2�t�s�t�s��t�	 . �18�

The ensemble average operator can be moved inside the
summation. As mentioned above, attenuation and focusing
effects are included in the w�t� term so that the intensity of
s�t� is constant with depth. Equation �18� becomes

�t=t1

t2
�w2�t�s�t�s��t�	 = Ī · �

t=t1

t2

w2�t� , �19�

where Ī= �s ·s�	 is the mean signal intensity. Replacing the
summation with an integral, Eq. �17� becomes


1,2 =
�t1

t2w2�t��s1�t�s2
��t�	/Īdt

�t1

t2w2�t�dt

=
�−Z/2

Z/2 w2����s1���s2
����	/Īd�

�−Z/2
Z/2 w2���d�

=
�−Z/2

Z/2 w2���
���d�

�−Z/2
Z/2 w2���d�

, �20�

where Z is the window length of the windowed rf echo signal
segment, � is the distance from a position within the window
to the center of the window, which is in the range from −Z /2
to Z /2. 
��� is the correlation of signals resulting from posi-
tion � within the window of the rf segment. Since the axial
coordinate of position � is z0+�, the axial distance from the
ith scatterer to position � becomes l1,i� = l2,i� =zi− �z0+��. Sub-
stituting these new axial distances into Eq. �13� and perform-
ing the integration, we can obtain the correlation coefficient
between signal samples located at position � within the win-

dow of the rf segment as
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��� = 
0 exp
−
�2

	z
2 �1 − 
0

2�� . �21�

So far we have only considered the ideal condition where
the lateral displacement is accurately tracked and the point of
interest is always at the center of a beam line. Under practi-
cal conditions, however, the beam lines are not continuous
but sampled. The center point O2 in Fig. 2 may not exactly
be in the center of a beam after a shear deformation. To take
this effect into account, we assume the presence of a shift �l
between the beam axis and the position of O2 in the lateral
direction. So the lateral distances from scatterers to the beam
axis for the postdeformation case can be written as

l2,i� = xi2 − x02 − �l . �22�

Substituting Eq. �22� into Eq. �13� and performing the
integration, we can obtain the modified correlation coeffi-
cient for signals resulting from position � within the window
of the rf segment as


���� = 
0 exp
−
�� − �l/tan ��2

	z
2 �1 − 
0

2�� . �23�

II.B. Signal-to-noise ratio

The SNR of shear strain elastograms can be defined in a

similar way as the SNRe of axial elastograms and is given by

sible only within the CRLB. The composite SNRC incorpo-
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SNRsse =
�sse

	sse
, �24�

where �sse and 	sse are, respectively, the mean and standard
deviation of the shear strains over a region of uniform elas-
ticity. The shear strain is defined by

ezx =
1

2

 �dz

�x
+

�dx

�z
� , �25�

where dz and dx denote, respectively, the axial and lateral
displacement. From this definition, the variance of the shear
strain can be expressed in terms of the variance of axial and
lateral displacement, 	2�dz� and 	2�dx�,

	sse
2 =

	2�dz�
X�x

+
	2�dx�
Z�z

, �26�

where X denotes the lateral beam width, �x is the beam
spacing, and �z is the window separation in the axial direc-
tion. Although the lateral displacement would be related to
the axial displacement by the Poisson’s ratio for incompress-
ible materials, the estimation of the axial and lateral dis-
placements from the ultrasound echo signals have been as-
sumed to be independent of each other to simplify the
derivation. The upper bound of the SNRsse is obtained when
the lower bound on the displacement estimation standard

36
deviation is substituted in Eq. �26�,
	2�dz�ZZLB 
�
�sT�2

12
, �BT�SNRC � �

threshold � � �BT�SNRC � �

	2�dz�BB =
18fc

2

�2T�B5 + 12B3fc
2�

 1


2
1 +
1

SNR2�2

− 1� , � � �BT�SNRC � �

threshold � � �BT�SNRC � �

	2�dz�CRLB =
3

2�2T�B3 + 12Bfc
2�

 1


2
1 +
1

SNR2�2

− 1� , � � �BT�SNRC

� , �27�
where �, �, �, and � are thresholds,36 that demarcate the
three distinct operating regions of the Ziv–Zakai lower
bound �ZZLB� for the time delay or displacement estimation
variance based on the value of the postintegration SNR term
BT SNRC, s denotes the strain, T is the axial window length
in units of time, B is the bandwidth, fc is the center fre-
quency, 
 is the correlation coefficient, which is given by Eq.
�20�, and the SNR term represents only the contribution due
to electronic noise �SNRS�. A distinct threshold region
�where an exponential increase in the variance occurs� is
observed between the Cramer–Rao lower bound �CRLB� and
the Barankin bound �BB� and the constant variance level.
Accurate estimation of the displacement and strain is pos-
rates both the electronic noise and the decrease in SNR
caused by signal decorrelation and is given by36

SNRC =
SNRSSNR


1 + SNRS + SNR


, �28�

where SNR
=
 / �1−
�.
The variance of the lateral displacement estimates can be

expressed in terms of the variance of the axial displacement
estimates37

	2�dx� � 
X

lp
�2

�1 + 3/bl
2�	2�dz� , �29�
where lp is the pulse width and bl is the fractional bandwidth.
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Thus, the lower bound on the variance of the shear strain
can be obtained by substituting Eqs. �27� and �29� into Eq.
�26�. Observe from Eqs. �27�–�29� that the variance of axial
and lateral displacement estimates strongly depends on the
effective correlation coefficient 
. In this article, we derive
the effective correlation coefficient of pre- and postdeforma-
tion rf segments as a function of the amount of lateral shear
deformation applied. The effects of finite window length on
signal decorrelation and on variance of the strain estimator
are taken in consideration, which is more accurate and com-
plete than the method used in the prior study.16

The correlation model presented in this article can be eas-
ily extended to study the signal decorrelation caused by other
types of deformation, such as axial compression, lateral ex-
pansion, and axial shear deformation, etc. Axial compres-
sion, which is usually applied in conventional elastography,
is not addressed in this study. This is because the shear strain
images obtained by applying an axial compression exhibit
similar patterns for both bound and unbound inclusions, as
shown in Fig. 1. In addition, the image quality of SSEs will
be decreased due to the additional decorrelation noise caused
by the axial compression if both axial compression and lat-
eral shear deformation are applied simultaneously.

III. THEORETICAL RESULTS

Figure 3 presents a comparison of the correlation coeffi-
cient obtained from the numerical integration of Eq. �13� and
the approximate expression obtained using Eqs. �16�, �20�,
and �21�. Here we ignored signal intensity variations due to
attenuation and focusing effects and the window function
w�t��1. The correlation coefficients are plotted as a function
of the shear angle for different insonification frequencies.
Results were obtained using a 3-mm rf segment centered at a
depth of 2 cm and the transducer aperture was 10 mm. To
approximate the lateral PSF using a Gaussian profile, we
used 	x=0.36 / f0 in Eq. �14� to match the main lobe of the
beam profile given in Eq. �8�. As shown in the figure, a good
agreement between the approximated curves �solid lines� and

FIG. 3. Comparison between the exact numerical and approximated theoret-
ical expressions for the correlation coefficient vs shear angle for different
insonification frequencies.
the numerical results �square symbols� is demonstrated. This
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indicates that the Gaussian profile provides a good approxi-
mation of the lateral PSF and the effect of beam sidelobes on
signal decorrelation can be ignored. As illustrated in the fig-
ure, the signal decorrelation rate of rf signal pairs increases
with the insonification frequency. This is primarily due to the
fact that the ultrasound beam becomes narrower with in-
creased frequency, enabling scatterers that were within the
predeformation beam to leave the beam and newer scatterers
to enter the beam after the lateral shear deformation, espe-
cially at large shear angles.

Figure 4 presents the normalized correlation coefficient
values for different lengths of rf signal segments. Both the
numerical and approximated results are plotted and they
agree with each other. The rf data segment was assumed to
be centered at a 2-cm depth in the phantom, the aperture of
the transducer was assumed to be 10 mm, and the insonifi-
cation frequency 6 MHz. As the length of the rf segment
increases, the scatterers included within the gated segment
are farther from the center of the initial data segment. Now,
with the application of the shear deformation, new scattering
sources are interrogated, especially for depths around the
edges of the gated region, causing the signal to decorrelate
faster.

IV. METHODS AND RESULTS

It is more convenient to study the noise performance of
the shear strain estimates using a uniformly elastic phantom.
However, shear strain elastograms for inclusion phantoms
are needed to investigate the ability of shear strain imaging
in assessing tumor malignancy. In this work, computer simu-
lations and phantom experiments were used to demonstrate
the feasibility of using shear strain images induced by a lat-
eral shear deformation to distinguish benign from malignant
tumors.

IV.A. Simulation

A uniformly elastic simulated TM phantom to evaluate
the noise performance of shear strain imaging along with two

FIG. 4. Comparison between the exact numerical and approximated theoret-
ical expressions for the correlation coefficient vs shear angle for different rf
data segment lengths.
simulated single-inclusion phantoms of dimensions 4
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�4 cm2 were constructed using FEA software �ANSYS,
Inc., Canonsburg, USA�, with a Poisson’s ratio of 0.495 as-
sumed for both the inclusion and the background for all
phantoms.

Both inclusion phantoms contain a 1-cm diameter inclu-
sion, which was three times stiffer than the background. The
model is two dimensional, so that the inclusions correspond
to cylinders perpendicular to the scan plane. The first inclu-
sion phantom simulated the case of a malignant tumor, with
the inclusion fully bound to the surrounding medium. The
second inclusion phantom simulated the case of a benign
tumor, with the inclusion loosely bound to the background.
This was implemented in ANSYS by creating a contact sur-
face between the inclusion and background with a friction
coefficient of 0.01. The density of the mesh utilized for the
ANSYS simulated phantom was varied in the phantom, with
regions closer to the boundary of the inclusion meshed with
comparatively higher density �to obtain more accurate FEA
predictions of the local displacement�, since we are more
interested in the shear strains generated at the interface be-
tween the background and the inclusion. On the other hand,
the mesh applied to the background was coarser than that
applied to the inclusion to improve the computational speed.
To induce a lateral shear deformation, the bottom surface
was fixed and a lateral displacement was applied to the top
surface, as shown in Fig. 2. The amount of lateral shear
deformation is specified by the lateral shear angle �.

The FEA displacement field was then utilized in an ultra-
sound simulation program38 to generate pre- and postdefor-
mation rf echo signal data for elastographic processing. This
program simulates the frequency domain response of ultra-
sound wave transmission through a scattering medium. The
frequency response is then transformed back to the time do-
main to obtain ultrasound radio frequency frames. This simu-
lation program achieves similar rf wave forms when com-
pared to typical time domain simulation programs such as
field II. In our simulation, a numerical phantom was con-
structed with scatterers modeled using 100 �m radius poly-
styrene beads, which were randomly distributed in the phan-
tom at a number density of ten scatterers per cubic
millimeter to ensure Rayleigh scattering.27 The axial and lat-
eral displacement fields from ANSYS, after appropriate in-
terpolation to a regular Cartesian grid, were used to displace
the scatterers and generate the deformed phantom to generate
the postdeformation signals. A linear array transducer was
modeled, which consisted of 0.1�10 mm2 elements with a
0.1 mm center-to-center element separation. Each beam line
was formed using 128 consecutive elements. The incident
pulses were modeled to be Gaussian shaped with an 8-MHz
center frequency and a 100% bandwidth. The simulations
were performed assuming the sound speed in the phantom to
be constant at 1540 m/s and attenuation to be negligible. The
sampling frequency utilized was 52 MHz.

IV.B. Experiment

Two single-inclusion TM phantoms of size 10�10
3
�10 cm manufactured in our laboratory were used to
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evaluate the proposed method. One of the phantoms con-
tained a 1.4-cm diameter spherical inclusion fully bound to a
uniform background, while the other phantom contained a
1.4-cm diameter spherical inclusion loosely bound to the
background. Both inclusions were three times stiffer than the
background. The inclusions correspond to simulated bound
and unbound tumors surrounded by simulated breast glandu-
lar material background. The TM materials used in the phan-
tom have been described previously39,40 and consist of dis-
persions of microscopic safflower oil droplets in a �solid�
aqueous gelatin matrix. In each phantom, the spherical inclu-
sions are 10% oil by volume and the background is 50% oil
by volume.

The basic method of production has been described
previously,40 but following is a brief summary. Two cubic
acrylic boxes with inner dimensions 10�10�10 cm3 were
produced. Saran Wrap® �Dow Chemical Co., Midland, MI�
layers were epoxied over opposite ends of each box. Each
box consisted of two identical parts, the box being cut by a
plane parallel to the two parallel Saran Wrap® layers. The
first step in producing each phantom involved placing a mold
over the open end of a half box. This mold is a flat acrylic
plate with an acrylic hemispherical projection facing the 5
�10�10 cm3 volume. All inner surfaces, including the
hemisphere, were coated with a thin layer of petrolatum so
that the TM material would not adhere to them, and a flat
constraining plate was placed over the Saran Wrap® surface.
A hole in one acrylic side of the container allowed molten
background TM material to be introduced. The �molten�
background TM material was made using the method de-
scribed previously39 and the half box was filled with it. Ge-
lation and formaldehyde cross linking of the gelatin occurred
overnight. On the same day that the background material had
been produced, a 14 mm diameter spherical inclusion was
made with the 10% oil material. Thus, the sphere and 5
�10�10 cm3 background section were ready for the final
step the following day.

For the phantom to contain the unbound �loosely bound�
spherical inclusion, the 14 mm diameter inclusion was
coated manually with a thin layer of petrolatum—roughly
0.2 mm in thickness. The plate with a hemispherical projec-
tion was carefully removed from the 5�10�10 cm3 block
of background material and the petrolatum-coated sphere
was placed into the hemispherical depression in the con-
gealed background TM material. Then the other half of the
10�10�10 cm3 container was epoxied in place and the
remaining volume filled with molten background material.
After congealing and cross linking were complete, the Saran
Wrap® layers were removed and the cylindrical filling plug
severed, allowing the 10�10�10 cm3 phantom to be re-
moved from the acrylic container. The phantom was then
submerged in oil in a covered container.

The production of the other phantom in which the spheri-
cal inclusion was to be bound to the background TM material
proceeded in a different fashion. A small quantity �about 100
mL� of molten background TM material �50% oil� was pro-
duced and some of this material was drawn into a syringe. A

drop of this “glue” was placed in the hemispherical depres-
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sion in the previously made 5�10�10 cm3 section of
background material and the 14 mm inclusion quickly was
pressed into the hemispherical depression before any con-
gealing of the glue had occurred. The glue congealed within
a few seconds. Then the other half of the 10�10�10 cm3

container was epoxied to the first half �containing the con-
gealed TM background and spherical inclusion� and the re-
mainder of the 10�10�10 cm3 volume filled with molten
background material. On the next day, the completed phan-
tom was removed from its acrylic container �as described
above� and submerged in safflower oil in a covered storage
container.

The TM phantoms were scanned using a Siemens Antares
real-time clinical scanner �Siemens Ultrasound, Mountain
View, CA� equipped with a VFX 9-4 linear-array operating
at 9 MHz. Digitized echo signals at a sampling rate of 40
MHz were acquired. To induce a lateral shear deformation,
the phantom was placed on a plate attached to a stepper
motor that introduces a specified lateral translation of the
phantom and plate. The top surface of the phantom was fixed
using a compression plate with a rectangular slot for the
transducer face mounted on a linear stage driven by a second
stepper motor that is translated in the axial direction. The
surface of both plates was machined to be coarse to prevent
any slipping between the plate and the phantom. The experi-
mental setup is shown in Fig. 5. The phantoms were slightly
compressed by the top plate to ensure contact and the prede-
formation rf data were obtained. The bottom plate was then
laterally translated by a 2 mm increment corresponding to
1.3-deg shear angle and the postdeformation rf data acquired.

IV.C. Shear strain estimation

Axial and lateral displacements from the simulated and
experimental phantoms were estimated using a two-
dimensional multilevel motion tracking algorithm.41 The first
step of this algorithm involves an estimation of a coarse
displacement estimate utilizing B mode or envelope signals.
This coarse displacement estimate is then used to guide the
final cross-correlation computations on rf data. In this study,
we used a one-dimensional kernel, which is approximately 3
mm in the axial direction and one A line along the lateral

FIG. 5. A schematic diagram for the experimental setup for shear strain
imaging by applying a lateral shear deformation.
direction, to compute the cross-correlation function and to
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determine the displacement. For each step of this algorithm,
the cross-correlation coefficient is used as the matching cri-
teria. Components of the shear strain tensor as given in Eq.
�25�, including the axial shear �first term� and lateral shear
strains �second term�, are obtained from the displacement
vectors. Partial derivatives are approximated using a least-
squares strain estimator.42

IV.D. Results

Theoretical results demonstrating the variation in the cor-
relation coefficient and the SNRsse are verified and validated
using simulated rf data obtained using a uniformly elastic
phantom. Figure 6 shows a comparison between the theoret-
ical prediction and simulation results for the correlation co-
efficient of pre- and postdeformation rf segments as a func-
tion of applied shear deformation. The correlation coefficient
was obtained using a 3-mm rf data segment centered at a
depth of 3 cm from the transducer. The error bars denote the
standard deviation of the mean correlation coefficient esti-
mates over 12 independent data sets, which were obtained
using 12 independent realizations of the ultrasound simula-
tion program with randomly distributed tissue scatterers. The
theoretical prediction for the ideal case, obtained by comput-
ing Eqs. �16�, �20�, and �21�, is plotted as a solid line. The
theoretical prediction taking into consideration the effect of
beam axis shift, obtained by computing Eqs. �16�–�20� and
�23�, is plotted as the dashed line. Here we assume that the
shift is half the beam spacing �l=�x /2. As illustrated in the
figure, all curves follow a similar trend and the theoretical
predictions agree with simulation results fairly well. Note
that a better agreement between the theoretical prediction
and simulation results is obtained when the �l shift is con-
sidered, especially at small shear angles ��7°�. This is be-
cause the beam axis shift effect is more pronounced for small
lateral displacements, which is induced by a small amount of
shear deformation. This can also be explained using Eq. �23�,
where the term �l / tan � decreases with increasing shear

FIG. 6. Comparison between theoretical prediction and simulation results
for the correlation coefficient of pre- and postdeformation rf segments as a
function of applied shear deformation. The error bars were obtained from 12
independent realizations.
angle.
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Figure 7 presents a comparison between theoretical pre-
dictions and simulation results for the SNRsse as a function of
the applied shear deformation. For simulation results, the
SNRsse was calculated using a rectangular ROI of 4
�1 mm2 at the center of shear strain images. The error bars
were obtained from 12 independent realizations. Observe
that the maximum SNRsse is reached when the shear angle is
around 3–5 deg for the simulation results. At smaller shear
angles ��7°�, as illustrated in the figure, the theoretical pre-
dictions �dashed line� show good agreement with simulation
results when the beam axis shift effect is considered in our
model. The theoretical curve for the ideal case, denoted by
the solid line, however, overestimates the SNRsse at small
shear angles. This is due to the overestimation of the corre-
lation coefficient at small shear angles when the beam axis
shift is ignored, as shown in Fig. 6. At large shear angles
��11°�, as shown in Fig. 7, simulation results for the SNRsse

are much lower than theoretical predictions. This is because

FIG. 7. Comparison between theoretical prediction and simulation results
for the SNRsse as a function of applied shear deformation. For simulation
results, the SNRsse was calculated using a rectangular ROI of 4�1 mm2 at
the center of shear strain images. The error bars were obtained from 12
independent realizations.
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the theoretical model assumes that the displacement is accu-
rately tracked while the simulation results contain large er-
rors for displacement estimates due to signal decorrelation
effects at large shear deformations.

Figure 8 presents the noise-free finite-element calculated
shear strain images for both the bound inclusion �top� and
the unbound inclusion �bottom� phantoms, induced with a
lateral shear deformation with shear angle of 3°. Note that
the presence of increased shear strains generated around the
boundary between the inclusion and background for the un-
bound case. The difference in the shear strain patterns be-
tween bound and unbound cases is significant, when com-
pared to the shear strain pattern difference shown in Fig. 1.

Figure 9 presents shear strain images calculated from US
simulated rf data for the bound inclusion �top� and the un-
bound inclusion �bottom� phantoms. A lateral shear deforma-
tion with a shear angle of 3° was applied. Increased noise is
observed in the image computed from lateral displacement.
This is due to the lower resolution of displacement estimates
in the lateral direction when compared to the axial direction.
Although noisier, the shear strain images ��c� and �f�� exhibit
similar patterns as shown in Figs. 8�c� and 8�f�, and the dif-
ference between bound and unbound situations is clearly
demonstrated.

Finally, Fig. 10 presents experimental shear strain images
for both the bound and unbound spherical inclusion TM
phantoms. A lateral shear deformation with shear angle 1.3°
was applied. Observe that larger shear strains are generated
around the boundary between the unbound inclusion and
background when compared to the bound case. Note that the
differences of shear strain patterns between bound and un-
bound cases are not so distinct compared to the simulation
results shown in Fig. 9. This may occur because the experi-
mental phantoms contain spherical inclusions instead of cy-
lindrical inclusions used in our simulation models.

FIG. 8. Finite-element calculated im-
ages of ��a� and �d�� �dz /�x, ��b� and
�e�� �dx /�z, and ��c� and �f�� shear
strain=0.5��dz /�x+�dx /�z� for a fully
bound inclusion �top� and an unbound
inclusion �bottom� in a homogeneous
background. A lateral shear deforma-
tion with �=3° was applied.
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V. DISCUSSION

Shear strain elastograms provide useful additional infor-
mation on the degrees of bonding and mobility between the
tumor and surrounding tissues. Such information may help in
the differentiation of benign from malignant tumors. Previ-
ously reported shear strain elastograms12,43 were obtained
from the axial and lateral displacement induced by an axial
compression. In such cases, the shear strains not only depend
on the bonding conditions, but are also related to their ori-
entation with respect to the direction of compression. As
shown in Fig. 1, although the magnitude of shear strains
generated around an unbound inclusion is larger than that of
the bound case, the shear strain patterns are still similar. This
is due to the fact that the shear deformation at the boundary
Medical Physics, Vol. 35, No. 2, February 2008
of the inclusions is induced indirectly by the axial compres-
sion and the presence of the inclusion in both cases. More-
over, the extent of shear strains around the inclusion is fairly
small and difficult to control. In this article, shear strain elas-
tograms that are induced using a lateral shear deformation
are presented. Simulation results demonstrated that the shear
strain patterns for the bound and unbound inclusions are sig-
nificantly different with lateral shear deformations. The
amount of shear strains around the inclusion can also be
directly controlled by the lateral shear angle applied to the
phantom. Experimental results for both bound and unbound
spherical inclusions using TM phantom are in agreement
with the simulation results. These results indicate that the
mobility of the malignant and benign tumors may be classi-

FIG. 9. Strain images generated from
US simulated rf data of ��a� and �d��
�dz /�x, ��b� and �e�� �dx /�z, and ��c�
and �f�� shear strain=0.5��dz /�x
+�dx /�z� for a fully bound inclusion
�top� and an unbound inclusion �bot-
tom� in a homogeneous background. A
lateral shear deformation with �=3°
was applied.

FIG. 10. Experimental images of ��a�
and �d�� �dz /�x, ��b� and �e�� �dx /�z,
and ��c� and �f�� shear strain
=0.5��dz /�x+�dx /�z� for the bound
inclusion phantom �top� and the un-
bound inclusion phantom �bottom�. A
lateral shear deformation with �=1.3°
was applied.
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fied more clearly and directly through their shear strain pat-
terns induced by a shear deformation instead of by axial
compression.

To evaluate the quality of SSEs, a theoretical framework
is established to study the correlation coefficient between the
pre- and postdeformation rf data as a function of the applied
shear angle. It is extended from our previous work35,44 on the
correlation analysis of rf echo signals obtained at different
angular insonifications. The theoretical derivations are cor-
roborated using US simulation results using a uniform phan-
tom that verify and validate the theoretical expressions de-
rived in the article. The decorrelation rate of the rf signal
pairs before and after the shear deformation increase with
applied shear angle as expected. This increased decorrelation
rate is due to the cross-beam motion of scatterers following
the applied shear deformation. This theoretical model also
can be used to study the effect of the variation both the
ultrasound system parameters such as the center frequency,
bandwidth, etc. and the signal processing parameters such as
the window length and overlap of the rf data segments on the
correlation coefficient.

With the derived correlation coefficient, the lower bound
on the standard deviation of the shear displacement estimates
can be obtained through the ZZLB equations derived of the
strain filter framework.36 Thus, the upper bound on the
SNRsse of the SSE can be obtained in a similar way to that
derived for normal strain tensor estimations. US simulation
results using a uniform phantom are presented that verify the
theoretical predictions of the SNRsse. As shown in Fig. 7, the
SNRsse of simulation results increases to a maximum and
starts to saturate around a shear angle of 3° –5°. A similar
trend is also predicted by the theoretical results if the effect
of the beam axis shift is taken into account in our model. For
small shear deformations, the induced shear strain is low and
leads to low SNRsse values for the SSE. With an increase in
the applied shear deformation, the SNRsse improves with the
increased shear strains. However, for very large lateral shear
angles ��11°�, shear decorrelation noise becomes significant
leading to estimation errors in displacement estimates and
the subsequent decrease in the SNRsse at large shear defor-
mations as shown in Fig. 7. Although the theoretical predic-
tion overestimates the SNRsse at very large shear angles, the
model is still useful for choosing an optimal shear angle to
obtain good shear strain images. Since the decorrelation rate
depends on system parameters such as the center frequency
and the window length, the optimal shear angle should be
chosen depending on these parameter values. In addition, it
is important to take into consideration the effect of the beam
axis shift especially at small shear angles, as shown in Fig. 7.

VI. CONCLUSION

Shear strain elastograms induced using lateral shear de-
formation are investigated in this article. Ultrasound simula-
tion results demonstrate that the shear strain patterns ob-
tained by applying a shear deformation show significant
differences between bound and unbound inclusion phantoms

compared to shear strain images induced with axial compres-
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sions. The amount of the shear deformation can also be eas-
ily controlled by varying the lateral shear angle. Shear strain
imaging may be useful for clinical applications in differenti-
ating malignant from benign tumors. A theoretical frame-
work is also established to evaluate the variation in the cor-
relation coefficient between pre- and postshear deformation
rf signals and the SNRsse of shear strain elastograms. Our
results indicate that an optimal shear angle exists that would
enable the acquisition of high quality shear strain elasto-
grams that depends on both the ultrasound system and signal
processing parameters.
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