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Abstract
The feasibility of using ultrasound-based elastic modulus imaging to visualize
thermal ablation zones in an in vivo porcine model is reported. Elastic
modulus images of soft tissues are estimated as an inverse optimization
problem. Ultrasonically measured displacement data are utilized as inputs
to determine an elastic modulus distribution that provides the best match to
this displacement field. A total of 14 in vivo thermal ablation zones were
investigated in this study. To determine the accuracy of delineation of each
thermal ablation zone using elastic modulus imaging, the dimensions (lengths
of long and short axes) and the area of each thermal ablation zone obtained from
an elastic modulus image were compared to the corresponding gross pathology
photograph of the same ablation zone. Comparison of elastic modulus imaging
measurements and gross pathology measurements showed high correlation
with respect to the area of thermal ablation zones (Pearson coefficient = 0.950
and p < 0.0001). The radiological–pathological correlation was slightly lower
(correlation = 0.853, p < 0.0001) for strain imaging among these 14 in vivo
ablation zones. We also found that, on average, elastic modulus imaging
can more accurately depict thermal ablation zones, when compared to strain
imaging (14.7% versus 22.3% absolute percent error in area measurements,
respectively). Furthermore, elastic modulus imaging also provides higher
(more than a factor of 2) contrast-to-noise ratios for evaluating these thermal
ablation zones than those on corresponding strain images, thereby reducing
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inter-observer variability. Our preliminary results suggest that elastic modulus
imaging might potentially enhance the ability to visualize thermal ablation
zones, thereby improving assessment of ablative therapies.

S Online supplementary data available from stacks.iop.org/PMB/55/2281/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Image-guided radiofrequency (RF) and microwave (MW) ablation are increasingly used to
treat primary and some metastatic tumors in the liver (Sato et al 1996, Lencioni et al 2005, Lu
et al 2005, Liang et al 2005). In recent reports, excellent outcomes of treating renal tumors
using RF and MW ablation techniques were also achieved by several groups (Gervais et al
2000, 2005, Zagoria et al 2007, Laeseke et al 2007). The clinical potential of these techniques
for treatment of neoplasms at other sites, including breast (Jeffrey et al 1999), bone (Rosenthal
et al 1998, Callstrom et al 2006) and lung (Nguyen et al 2005, Wolf et al 2008, White and
D’Amico 2008), has also been reported. While thermal ablation can be an effective cancer
treatment tool, the lack of a reliable imaging modality to monitor progression of ablation
treatment is still a significant problem (Gazelle et al 2000, Solbiati et al 1997, Goldberg et al
2000, Montgomery et al 2004). To eradicate the entire tumor mass, thermal ablation must
ensure delivery of a lethal thermal dose to the whole tumor and an ablative margin, while
minimizing heat damage to vulnerable areas (e.g. bowel, stomach, gall bladder, bile ducts
and the renal cortex). Unfortunately, because of a lack of adequate imaging-based treatment
monitoring options, undertreated portions of the tumor often go undetected until follow-up.
Accordingly, a rapid feedback imaging technique would be useful for the real-time or near
real-time evaluation of the ablation zone to help reduce the number of local recurrences and
subsequent re-treatment sessions after thermal tumor ablation.

In many centers, the insertion of the RF/MW applicator is usually done under ultrasound
guidance since it offers a fast and effective real-time method of guidance. Unfortunately,
attempts to monitor ablation with conventional B-mode ultrasound have been largely
unsuccessful. Hyperechoic areas caused by micro-bubbles and gas formed during tissue
heating have been used as a surrogate for the ablation zone but do not correlate well with
the actual ablation zone (Bush et al 1993). In addition, these hyperechoic areas gradually
disappear within 30 min after ablation, making post-treatment evaluation difficult. Contrast-
enhanced ultrasound (CEUS) has been shown to be of benefit (Solbiati et al 2004) but is not
approved for use in all countries. CEUS is also plagued by a relatively short cycle time in
the livers and kidneys. In addition, to monitor an ablation procedure, micro-bubble contrast
agents must thereafter be continuously injected throughout the treatment.

X-ray computed tomography (CT) can predict the coagulation zone with a precision of
2–3 mm (Goldberg et al 2000). However, the use of CT or contrast-enhanced CT (Dupuy and
Goldberg 2001) is limited by the amount of contrast agent that can be injected (due to possible
renal failure) and concerns regarding the radiation dose to both the patient and the physician.
Magnetic resonance imaging (MRI) can be utilized for imaging the ablation zone in several
ways (Goldberg et al 1998, Weidensteiner et al 2003, Stern et al 2008, Pilatou et al 2009,
Hyodoh et al 1998). However, there is limited availability of FDA-approved MRI-compatible
applicators and a shortage of interventional MRI scanners (Carter et al 1998, Wacker et al
2004).

http://stacks.iop.org/PMB/55/2281/mmedia
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During RF ablation, protein denaturation during heating results in an increase in the
elastic modulus of tissue (Kiss et al 2004). Therefore, thermal ablation zones appear to be
stiffer than surrounding untreated tissue and may be differentiated by new elasticity imaging
methods that directly estimate mechanical properties of soft tissue (Gao et al 1996, Greenleaf
et al 2003, Ophir et al 1999, Hall 2003). Several methods, including strain imaging (Varghese
et al 2002, Kallel et al 1999), sonoelastography (Zhang et al 2008) and acoustic radiation
force imaging (Fahey et al 2006), have demonstrated good correspondence between elasticity
imaging findings and gross pathology features.

Our group, among others, has been developing quasi-static elasticity imaging methods
that employ unmodified clinical equipment and examination techniques similar to standard
clinical ultrasound examinations. With these methods, an ultrasound transducer is used
to acquire phase-sensitive ultrasound echo data (either radiofrequency (RF) or quadrature
data). Ultrasound echo signals are tracked as the anatomy is deformed to obtain local tissue
displacement information. The displacement field is then used to calculate the component of
strain along the direction of the acoustic beam (hereafter referred as to strain) to form a 2D/3D
strain image. This strain image is interpreted as an image of the reciprocal of the shear or
Young’s modulus for the tissue (Ophir et al 1991). Unlike strain, Young’s or shear modulus
is an intrinsic material property of the tissue being studied, thereby providing unambiguous
information regarding tissue elasticity (Barbone and Bamber 2002). Considerable research
efforts have been directed to use the same displacement field to solve an inverse elasticity
problem to explicitly determine the spatial distribution of the elastic modulus of interest.
While a few techniques (Kallel and Bertrand 1996, Zhu et al 2003, Doyley et al 2000,
Oberai et al 2004) have been proposed, only few applications to date (Oberai et al 2009)
have been applied to in vivo soft tissue. In this study, we will apply our relative elastic
modulus imaging (EMI) technique specifically designed for using ablation applicator-induced
deformation (Jiang et al 2009) in an in vivo porcine liver model.

Our objective is to evaluate the radiological–pathological correlation and accuracy of this
technique in pre-clinical animal studies. In this paper, we compare the dimension and area
measurements of in vivo thermal ablation zones obtained using strain imaging and relative
EMI against the dimension and area measurements using corresponding gross-pathology
photographs of the same thermal ablation zones. Furthermore, both a contrast-noise ratio
metric (Song et al 2004) and inter-observer variability among three human observers of elastic
modulus and strain images are assessed to demonstrate that the EMI could become a potentially
enhanced modality for visualizing thermal ablation zones.

2. Materials and methods

A brief description of the proposed EMI method including data acquisition and analysis is
given in this section. Figure 1 shows a flowchart describing, in general, the proposed EMI
method used for data acquisition and processing.

2.1. Animal preparation and experiments

Following an institutionally approved animal protocol, a total of 15 ablation zones
were created in vivo in five porcine animals with normal liver (radiofrequency
n = 14 and microwave n = 1). During open-abdomen ablation experiments, general anesthesia
was first induced with an intramuscular injection of teletamine and zolazepam (Telazol; Fort
Dodge Laboratories, Fort Dodge, IA) and xylazine (Rompun; Bayer Corporation, Shawnee
Mission, KS) and was maintained with inhaled isoflurane 1–3%. Subsequently, laparotomy
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Figure 1. A flowchart describing the EMI procedure.

was performed for each animal to expose the liver for open abdominal ablation. Fourteen
radiofrequency ablation procedures were performed using a 17-guage cooled needle electrode
(Valleylab Inc., CO, USA) with a 30 mm electrically active tip, while the only microwave
ablation experiment was performed using a 17-gauge triaxial antenna prototype (Brace et al
2007). Ablation experiments were performed for 4–12 min to create various sized thermal
ablation zones (1–3 cm diameter).

Immediately following each ablation procedure, the hand-held ultrasound transducer was
positioned adjacent to the ablation applicator, and a radiologist (AA) first scanned the entire
thermal ablation zone. After identification of an appropriate imaging plane by the radiologist
for each ablation zone, ultrasound echo data were collected under the guidance of a real-time
strain imaging system (eSie Touch, Siemens Antares, Siemens Healthcare Inc., Ultrasound
Division). During ultrasound data acquisition, an RF or MW applicator was used to perturb
liver tissues to create the deformations needed for strain imaging and EMI as shown in
figure 2 (Varghese et al 2002). Of note, small (<0.5 mm from (ultrasound) frame-to-frame)
deformation of the tissue was achieved by pulling or pushing the ablation electrode enabling a
deformation force to be transmitted to the tissue being imaged through the adherence of ablated
soft tissue to the metal electrode (Mikami et al 2004). All ultrasound data were acquired using
a linear array ultrasound transducer (VFX 9–4; Siemens Healthcare (USA) Inc.) pulsed at
6 MHz in conjunction with the Axius DirectTM Ultrasound Research Interface (URI) package
(Brunke et al 2007). The lateral beam spacing and axial sample size for the ultrasound data
acquired were approximately 0.15 mm and 0.02 mm, respectively.

After each animal was euthanized, the entire liver was removed and was serially sectioned
at approximately 3 mm intervals to expose the ultrasound imaging plane for gross pathology
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Figure 2. A schematic diagram illustrating the experimental setup for ultrasound data acquisition
using RF electrode deformation. The arrow points to the thermal ablation zone (the shadowed
area). Ultrasound echo data are acquired from the area covered by the dashed lines using a linear
array ultrasound transducer.

analysis. Section planes of each ablation zone were nearly parallel to the corresponding
insertion track of the ablation applicator and were determined under the guidance of surface
markers representing the corresponding imaging plane.

2.2. Formation of strain and elastic modulus images

As illustrated in figure 1, in the first step, a previously published speckle tracking method
(Jiang and Hall 2009) was used to obtain the ultrasonically measured displacement field.
These displacement measurements were then used as inputs for the inverse reconstruction of
the modulus distribution in the second step. This speckle tracking algorithm is a constrained
block matching algorithm (BMA) that tracks ultrasonic speckle patterns by searching for a
kernel of echo data from the pre-compression echo data in a 2D search region of the post-
compression echo field to minimize the following cost function:

COST =
∑
�

(αEC + �(ES)), (1)

where the first item EC is a penalty term for speckle de-correlation, the second term �(ES) is
a penalty term due to the loss of motion continuity from a cluster of displacement vectors, and
α is a positive regularization parameter. We set α to 1 for all data investigated in this paper.

Using axial (parallel to the acoustic beam direction) displacements obtained from the
above-described speckle tracking algorithm, a 2D finite element-based iterative modulus
reconstruction algorithm developed in our previous work (Jiang et al 2009) was used to
obtain modulus distributions in and around all 14 thermal ablation zones. The basic idea of
EMI is to iteratively adjust local modulus values to enforce a biomechanical model to produce
displacements close to those obtained from ultrasonic speckle tracking. We formulate the EMI
as a constrained minimization problem and assume that the tissue being imaged is linearly
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elastic as a first approximation for small deformations (approximately 1.0% frame-to-frame
average strain),

J (Ê) = arg min

{
1

2
‖T (Ê) − Û‖2 + βV (Ê)

}
, (2)

V (Ê) =
∫

�

(√|∇Ê|2 + γ 2
)

d�, (3)

subject to

Emin � Ê � Emax, (4)

where T (Ê) is the predicted axial displacement by a forward finite element simulation based
on the current estimated modulus distribution Ê and Û is the estimated axial displacement
using the ultrasound-based speckle tracking algorithm described above. In equation (3), ∇
is a gradient operator, |(x, y)| =

√
x2 + y2 is the Euclidean norm and γ is a small positive

constant.
To stabilize the solution of equation (2), regularization (Vogel 2002) is often used, and the

resulting solution is a tradeoff between fidelity to the measured displacement data (the first item
on the right-hand side of equation (2)) and bias due to the regularity of the solution constrained
through the regularization function (the second item on the right-hand side of equation (2)).
In other words, regularization injects a priori knowledge to balance this tradeoff for a given
situation. In this sense, β is a positive parameter controlling the tradeoff between the fidelity
and variability in Ê. In our experience, ablated tissues typically have a sharp transition
in tissue stiffness between the normal and the ablated regions, whereas the tissue stiffness
within both the normal and ablated regions gradually varies. Therefore, an edge-preserving
regularization function V (Ê) is selected to enforce such a priori knowledge in the hope of
accurately capturing boundaries of a thermal zone in the reconstructed modulus map. In this
study, β (equation (2)) and γ (equation (3)) were set to 5 × 10−7 and 0.1, respectively, for
all data investigated. Detailed formulations to solve equations (2)–(4) can be found in our
previous work (Jiang et al 2009).

2.3. Implementation of the EMI algorithm

To obtain a relative elastic modulus image, the basic procedures involved are summarized as
follows.

(1) Estimate displacement Û from a region of interest (ROI; see the white box in figure 3(a))
defined by a user.

(2) Identify the location of the ablation electrode in both axial displacement and B-mode
images. In the axial displacement image, pulling/pushing of the ablation electrode
results in a rigid-body motion, that is, relatively constant displacements within a small
region (see the arrow in figure 3(c)). In the B-mode image, a metal electrode typically
results in reflection (see the arrow in figure 3(a)) shadowing below it. The locations of the
ablation electrode on displacement and B-mode images should be spatially consistent.

(3) Assume an initial uniform Young’s modulus distribution Ê. The displacements within the
identified electrode region and the displacements at the edges of the ROI will be enforced
as boundary conditions to solve the 2D FEA forward solution (i.e. T (Ê) in equation (2)).

(4) Compare these predicted displacements T (Ê) with the ultrasonically measured
displacements Û . Simultaneously, the assumed modulus distribution Ê is updated.
Iterations between (3) and (4) continue until one criterion or all convergence criteria are
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(a) (b)

(c) (d)

Figure 3. An example demonstrating that different displacement fields affect the quality of
resultant elastic modulus images. All three displacement fields ((c), (e) and (g)) were obtained
from the same thermal ablation zone shown by the B-mode image in (a). Three resultant elastic
modulus images from (c), (e) and (g) are shown in (d), (f) and (h), respectively. Estimated DQM
values from a sequence of strain images shown in movie 1 stacks.iop.org/PMB/55/2281/mmedia
can be found in (b). The vertical and horizontal arrows point to the DQM values corresponding to
those in displacement fields displayed in (c) and (e), respectively. The arrows in (a) and (c) point
to the location of the ablation applicator, while arrows in (e) and (g) point to decorrelation noise in
the displacement fields.

http://stacks.iop.org/PMB/55/2281/mmedia
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(e) (f)

(g) (h)

Figure 3. (Continued.)

satisfied. Usually, the criteria for convergence can be set with pre-determined thresholds
ε1 and ε2 such that, delta(Ê) < ε1 and/or J (Ê) < ε2. delta(Ê) above denotes the
difference in the modulus distributions between two consecutive iterations. Convergence
was typically reached within 30 iterations when we set both ε1 and ε2 to 10−6 in this study.

(5) Once convergence is reached, all modulus values within the ROI will be normalized by
an averaged modulus value from a small area (typically 5 mm by 5 mm) identified by
the user as the normal liver tissue. This step converts all of our results to relative elastic
modulus images.

2.4. Data selection and processing

RF echo data (approximately 160 frames for each thermal ablation zone) acquired for each
ablation zone were processed offline using Matlab (Mathworks Inc., MA, USA) to obtain a
sequence of strain images using the modified block matching algorithm described above (Jiang
and Hall 2009). During strain image formation, a small two-dimensional kernel (0.90 mm
lateral width by 0.40 mm axial length with 83% overlap laterally and 50% overlap axially)
was used to track axial displacements (a pixel size of 0.15 mm (lateral) × 0.2 mm (axial)).
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Then, axial strain images were obtained by fitting the local estimated axial displacement data
to a line (i.e. linear regression) whose slope provides local strain at the center of this small
(1.8 mm) segment of axial displacement estimates (Kallel and Ophir 1997).

A displacement quality metric (DQM; (Jiang et al 2006)) was calculated for each
displacement and strain image. The DQM is the product of the normalized cross-correlation
coefficient among the pre-deformation and motion-compensated post-deformation RF echo
fields (a measure of motion tracking accuracy applied to the entire region of interest) and
the normalized cross-correlation coefficient between two consecutive motion-compensated
strain images (a measure of strain image consistency) (Jiang et al 2006). The DQM values lie
between 0 and 1, with 1 providing the best result. The DQM method is used for semi-automated
data selection as described below. Strain images are marked as ‘high’ quality only if at least
three consecutive strain images possess DQM values greater than 0.75. One example of DQM
estimates for 20 consecutive strain images estimated from a thermal ablation zone (see figure
3(a)) is shown in figure 3(b). The corresponding 20 frames of strain images displayed side
by side with B-mode images can be found in movie 1 stacks.iop.org/PMB/55/2281/mmedia.
If more than one ‘high’ quality strain image for a given thermal ablation zone exist, one
displacement field (typically the displacement field whose corresponding strain image had
the highest DQM value and least decorrelation noise as demonstrated in figure 3(c) below) is
selected to reconstruct the corresponding elastic modulus image as described in sections 2.2
and 2.3.

Due to computational limitations, the displacement fields selected for the modulus
reconstruction (see the ROIs in figures 3(a) and (c)) were spatially decimated to accommodate
a smaller finite element mesh (41 × 41). For all cases, the size of finite elements (with
a modulus constant within a finite element) used for EMI was variable but approximately
0.75 mm × 0.75 mm.

Three displacement images shown in figures 3(c), (e) and (g) all correspond to the same
thermal ablation zone displayed in figure 3(a). Their DQM values are 0.85 (the 20th frame
in figure 3(b) and movie 1), 0.68 (the eighth frame in figure 3(b) and movie 1) and 0.42 (not
in movie 1), stacks.iop.org/PMB/55/2281/mmedia, respectively. In two displacement images
(figures 3(e) and (g)) with relatively low DQM values, relatively high noise can be observed
as indicated by arrows at the lower right corner. Consequently, when we reconstructed
elastic modulus images using these three displacement fields, the quality of elastic modulus
images was variable. In the case of the high quality displacement image (i.e. figure 3(c)), a
single coherent region where relative modulus values were elevated can be clearly seen from
figure 3(d). However, the resultant elastic modulus images from two relatively low quality
displacement images could either contain considerable noise (figure 3(f)) or deviate from the
expected shape of the thermal ablation zone (figure 3(h)).

The image quality of the resultant strain and elastic modulus images was assessed by the
weighted contrast-to-noise ratio (CNR) defined below (Song et al 2004):

CNR = |St − Sb|(
wtσ

2
t + wbσ

2
b

)1/2 , (5)

where S and σ 2 denote means and variances of signals, and the subscripts b and t represent
the background and target, respectively. w is a weighting of the area of the target and the
background to the total area given by wx = areax/areatotal. The inclusion of the weighted area
is necessary because the target and the background contribute in different amounts to the noise
estimates (Song et al 2004). It is worth noting that we converted all strain and elastic modulus
images to the same resolution (a pixel size of 0.2 mm by 0.2 mm) prior to the estimation of
CNR values and human segmentation of the ablation zones described below in section 2.5. To

http://stacks.iop.org/PMB/55/2281/mmedia
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calculate the CNR using equation (5) for each elasticity (strain and modulus) image, we used
the manually segmented thermal ablation zone (see an example given by figure 3(d)) and the
rest of the image as the target and the background, respectively.

2.5. Measurement of thermal ablation zones

Data from one RF ablation zone were excluded because the thermal ablation zone could not
be seen using any modalities including B-mode, strain imaging and EMI. Only data obtained
from the remaining 14 thermal ablation zones were processed and analyzed in this study.
These 14 thermal ablation zones were manually delineated by three independent observers
on strain and elastic modulus images, and corresponding pathology photographs using
ImageJ (http://rsbweb.nih.gov/ij/). All three observers are ultrasound physicists/engineers
who actively perform research related to ultrasound-based elasticity imaging. To understand
the influence of color maps, both color and grayscale strain and elastic modulus images were
presented to human readers.

In the first step, all observers were given grayscale strain and elastic modulus images,
together with the co-registered B-mode ultrasound images, in a random order and were asked
to delineate the thermal lesion boundaries in B-mode, strain and elastic modulus images.
All observers had knowledge of the approximate position of each thermal ablation zone by
simultaneously viewing the corresponding B-mode image. To look for sites of ablation zones
in ultrasound B-mode images, observers were instructed to examine echogenicity changes.
Observers were also instructed to look for a smooth contour representing a sharp transition
(i.e. a large gradient in image contrast) between the normal liver tissue and the ablated tissue
on the strain and elastic modulus image. When boundaries of a thermal ablation zone were
not clearly defined on corresponding ultrasound B-mode, strain and elastic modulus images,
observers were asked to complete their task by conservatively outlining a smooth contour
around the position of the ablation applicator (known from the corresponding B-mode image).

In the second step, all observers were given a set of color (color map ‘jet’ in MATLAB)
strain and elastic modulus images, together with the co-registered B-mode ultrasound images
in a different random order. These color strain and elastic modulus images were exactly the
same set of strain and elastic modulus images except the color map. Following the same
guidelines mentioned above, observers were asked to delineate the thermal lesion boundaries
in those color strain and elastic modulus images. A dynamic range for all strain images was set
from either 0 to 2% or four times of the frame-average strain, whichever was less. Similarly,
we also limited the dynamic range for all elastic modulus images either by using a relative
scale ranging from 1 to 8 or four times of the frame-average relative modulus value, whichever
was less.

In the third step, only 14 gross pathology images were given to these three observers,
in a random order. Most in vivo thermal ablation zones contain a central white/gray zone
representing coagulation necrosis and a surrounding red ring of about 1–3 mm thickness,
representing hemorrhagic and inflammatory reactions (Goldberg et al 2003, Cha et al 2000).
Because the outer red rim of the thermal ablation zone contains no viable cells (Goldberg
et al 2003, Cha et al 2000), observers were instructed to include this thin layer from their
segmented thermal ablation zones. In all three steps, after the thermal ablation zones were
depicted, dimensions and areas of the thermal ablation zones were measured using the ImageJ
software. Contouring with ImageJ described above was performed on the same monitor
(MultiSync LCD 1860NX, NEC, Japan) with the same default monitor setting.

In the fourth step, we calculated the extent of overlap of areas of thermal ablation zones
segmented manually by three observers in gross pathology, elastic modulus and strain images.

http://rsbweb.nih.gov/ij/
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Figure 4. A plot of estimated contrast-to-noise ratios (CNRS) obtained from strain images (X-axis)
with respect to estimated CNRE obtained from elastic modulus images (Y-axis). The dashed line
indicates a perfect slope representing equal contrast-to-noise ratio from both modalities.

The overlap was computed as follows:

Overlap = Area1 ∩ Area2 ∩ Area3

Area1 ∪ Area2 ∪ Area3
, (6)

where ∩ and ∪ represent intersection and union, respectively.

3. Results

Overall we found that there was virtually no difference (<5%) between measurements made
on grayscale and color strain images, though measurements on grayscale strain images
resulted in slightly lower errors as compared to measurements obtained from gross pathology
photographs. On the other hand, measurements made on color elastic modulus images
were slightly more accurate. Therefore, in this section, the comparison between strain
imaging and EMI was based on measurements on grayscale strain and color elastic modulus
images.

3.1. Visibility of in vivo thermal ablation zones

As agreed upon by all three observers, the boundaries of all 14 thermal ablation zones were
visualized by EMI (100%), while only 11 (78.5%) and 9 (64.5%) were detected by strain
imaging and conventional B-mode ultrasound, respectively.

The estimated CNR values (equation (5)) from all strain and elastic modulus images
are plotted in figure 4. Similar to the results subjectively rated by the human observers,
the estimated CNRs also clearly indicate that modulus images (mean ± standard deviation:
3.32 ± 0.81; minimum: 1.96; maximum: 5.19) outperform the corresponding strain images
(mean ± standard deviation: 1.40 ± 0.78; minimum: 0.36; maximum: 2.64).

We found, in two cases, that the estimated CNR values were comparable between the
strain and modulus imaging. Figure 5 presents matching sonogram, strain, modulus and
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(a) (b)

(c) (d)

Figure 5. Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed
relative elastic modulus and (d) photography of gross pathology. The contours on (b) and (c) were
replicas of human observers’ boundaries of ablation zones. Arrows in (a) and (d) point to the
thermal ablation zone.

gross pathology images of a cross-section from one of these two thermal ablation zones. The
thermal ablation zone can be visualized both from the strain (figure 5(b)) and elastic modulus
(figure 5(c)) images. The size delineated by three different observers was consistent and
comparable to that in the gross pathology photography. It seems that different observers
merely chose different intensity thresholds when asked to manually segment the thermal
ablation zone. The estimated CNR (equation (5)) for the strain and elastic modulus images
shown in figure 5 were 2.64 and 2.75, respectively.

In three cases, the CNR values obtained from strain images were fairly low (0.55, 0.52 and
0.36, respectively). These three cases were three ‘undetectable’ cases agreed upon by all three
human observers. One of these three cases is shown in figure 6. The calculated CNRs were
0.55 and 4.65 for the strain (figure 6(b)) and elastic modulus (figure 6(c)) images, respectively.
It is easy to see that the thermal ablation zone can be visualized from the elastic modulus
images (figure 6(c)) but cannot be confidently depicted based on the corresponding strain
image (figure 6(b)). In fact, there was minimal overlap among the three contours depicted by
the three different observers.



Ultrasound-based relative elastic modulus imaging for evaluating ablation therapy 2293

(a) (b)

(c)
(d)

Figure 6. Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed
relative elastic modulus and (d) photography of gross pathology. The contours on (b) and (c) were
replicas of human observers’ boundaries of ablation zones. Arrows in (a) and (d) point to the
thermal ablation zone.

3.2. Measurement variability

In determining the measurement variability, the calculated differences in measured dimensions
and areas among three different observers were listed in table 1. In table 1, the relative
absolute difference between two observers A and B was calculated as follows: relative
absolute difference = (measurement of A − measurement of B)/averaged measurement of
gross pathology. Generally the measurement variability of the elastic modulus image data was
comparable to measurements of the gross pathology data and was much smaller than those of
strain imaging data. For example, the average percent difference (mean ± standard deviation)
over area measurements of the 14 thermal ablation zones for strain imaging, EMI and gross
pathology were 38.1 ± 39.5%, 15.8 ± 13.2% and 11.8 ± 10.5%, respectively.

The averaged calculated overlap (equation (6)) among three independent observers for
strain, elastic modulus and gross pathology images were 0.52 ± 0.21 (mean ± standard
deviation), 0.74 ± 0.09 and 0.82 ± 0.10, respectively. Again, in all 14 thermal ablation zones,
the calculated overlaps by equation (6) from elastic modulus images were higher than the
calculated overlaps from corresponding strain images.
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Table 1. Inter-observer variations in measurements of thermal ablation zones. ‘Abs’ stands for
the absolute difference (units: mm for dimensions and mm2 for area measurements) and ‘Rel’
stands for the relative absolute difference with respect to measurements obtained from the gross
pathology.

Mean difference
Standard
deviation

Maximum
difference

Minimum
difference

Abs (mm Rel Abs (mm Rel Abs (mm Rel Abs (mm Rel
or mm2) (%) or mm2) (%) or mm2) (%) or mm2) (%)

Short axis (strain) 3.3 27.7 2.5 22.3 10.4 98.7 0.0 0.0
Long axis (strain) 3.2 19.1 3.3 26.7 15.6 97.1 0.1 0.4
Area (strain) 61.3 38.6 54.4 39.5 212.2 176.5 1.5 0.7
Short axis (modulus) 1.2 10.0 1.1 8.2 5.6 40.4 0.0 0.4
Long axis (modulus) 2.1 12.2 2.0 12.7 6.9 54.0 0.2 1.0
Area (modulus) 28.8 15.8 22.4 13.2 79.8 43.8 0.6 0.2
Short axis (pathology) 1.5 12.9 1.2 12.0 4.8 50.9 0.0 0.0
Long axis (pathology) 1.2 7.1 0.8 6.2 3.5 29.2 0.0 0.0
Area (pathology) 20.9 11.8 15.0 10.5 51.7 48.5 0.4 0.3

For the thermal ablation zone illustrated in figure 5, the calculated overlap of the elastic
modulus image was 0.69 and was slightly better than the calculated overlap (0.59) from the
strain image. However, in an extreme case shown in figure 6 where the thermal ablation zone
is barely visible (CNR = 0.55) in the strain image (figure 6(b)), the calculated overlap among
the three observers for the strain image was only 0.03. It is easy to see that none of these
three contours delineated by human observers on the strain image (figure 6(b)) were similar
to that displayed by the gross pathology image. However, contours depicted by three human
observers using the corresponding elastic modulus image (figure 6(c)) resulted in a calculated
overlap value of 0.70 and were more consistent with the shape of the thermal ablation zone
shown by the gross pathology photograph (figure 6(d)).

The thermal ablation zone shown in figure 7 is an interesting case. Although the calculated
CNR value from the strain image (figure 7(b)) was only 0.36 and all three observers indicated
low confidence on the detectability of the thermal ablation zone using the strain image
(figure 7(b)). The contours delineated by human observers were remarkably consistent (0.60)
as shown in figure 7(b), and these three delineated contours were moderately similar to shape
and size of the thermal ablation zone on the gross pathology image (figure 7(d)). Of note, the
calculated CNR and overlap values for the corresponding elastic modulus image (figure 7(c))
were 2.26 and 0.67, respectively.

3.3. Dimension and area correlation analysis

Measurements of the coagulation area using elasticity imaging and gross pathology were
recorded by manually drawing contours (solid lines in three different colors) on respective
images (see figures 5–7) as described before. Figure 8 shows scatter plots of averaged area
measurements among three observers, comparing strain and EMI with freshly sliced gross
pathology areas along respective imaging planes. In figure 8, the dash-dotted line indicates
a perfect slope of 1, while the dashed and solid lines denote the linear fits for EMI and
strain imaging data, respectively. Error bars are the standard deviation of three measurements
made by three independent human observers, representing the uncertainty of the averaged
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(a)

(c)
(d)

(b)

Figure 7. Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed
relative elastic modulus and (d) photography of gross pathology. The contours on (b) and (c) were
replicas of human observers’ boundaries of ablation zones. Arrows in (a) and (d) point to the
thermal ablation zone.

measurements. Consistent with data discussed before, the error bars of the EMI data are
smaller than those of the strain imaging data. The correlation coefficient between EMI and
gross pathology areas (r = 0.950; p < 0.001) is better than between strain imaging and gross
pathology areas (r = 0.853; p < 0.001). Furthermore, the average of absolute percent errors,
defined as the average of absolute differences in area measurements between elasticity imaging
and gross pathology over the corresponding averaged area measurements obtained from the
gross pathology, were 14.7% and 22.3% for EMI and strain imaging, respectively.

Scatter plots of the averaged dimensions (short and long axes) of ablation zones among
three observers are presented in figures 9(a) and (b), respectively. As these scatter plots
show, we found that the short axes of ablation zones obtained using elasticity imaging (elastic
modulus and strain imaging) corresponded well to the short axes of the ablation zones on
the digitized photographs of gross pathology specimens (r = 0.903 (p < 0.001) and 0.733
(p = 0.003) and for elastic modulus and strain imaging, respectively). The long axes of the
ablation zones on elastic modulus and strain images had a slightly worse correspondence to
measurements obtained from the pathologic specimens (r = 0.887 (p < 0.001) and 0.747
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Figure 8. A plot comparing the area of thermal ablation zones between gross pathology and
elasticity imaging (squares and circles represent averaged area measurements from three observers
obtained from strain imaging and EMI). The estimated linear correlation coefficient between
pathology and EMI was 0.950 (p < 0.0001), while the estimated linear correlation coefficient
between pathology and strain images was 0.857 (p < 0.0001). Error bars denote one standard
deviation among three observers made the measurements.

(p = 0.002) for elastic modulus and strain imaging, respectively). To obtain averaged lengths
of the short and long axes for each thermal ablation zone from three independent observers,
we simply averaged their measurements. Therefore, errors that may be caused by the angular
shifts of the principal axes among different observers were not taken into account. In both
plots, the dash-dotted line indicates a perfect slope of 1, while the dashed and solid lines
denote the linear fits for EMI and strain imaging data, respectively.

3.4. Other notable cases

3.4.1. Bifurcated thermal ablation zone. The B-mode (figure 10(a)) and strain image
(figure 10(b)) largely showed a single coherent ablation zone, while, in the reconstructed
elastic modulus image (figure 10(c)), the bifurcation of the ablation zone is apparent and
matches with the gross pathology image (figure 10(d)) more accurately in terms of the overall
shape. We speculate that, during the insertion of the ablation applicator, a vessel was damaged,
causing intra-parenchymal hemorrhage. Possibly, the formation of a blood bubble or the blood
itself around the RF electrode (known as the heat sink effect) may have prevented local heat
conduction, causing the bifurcated ablation zone. It is interesting to note that only one
observer delineated the bifurcated shape of the thermal ablation zone on the elastic modulus
image (figure 10(c)) and the other two observers were more conservative because of the
unusual shape of the thermal ablation. However, two human observers overestimated the
size of the thermal ablation zone on the corresponding strain image as shown by contours in
figure 10(c). In clinical practice, the overestimation of the size of thermal ablation could cause
premature termination of the thermal ablation procedure, thereby leaving viable cancerous
tissue untreated.
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(a)

(b)

Figure 9. Plots of (a) the short axis and (b) the long axis of thermal ablation zones between gross
pathology and elasticity imaging (squares and circles represent averaged dimension measurements
from three observers obtained from strain imaging and EMI). The estimated linear correlation
coefficients between pathology and EMI for short and long axes were 0.903 (p < 0.001) and
0.887 (p < 0.001), respectively, while the estimated linear correlation coefficients for long and
short axes between pathology and strain images were 0.733 (p = 0.003) and 0.747 (p = 0.002),
respectively.

3.4.2. Detection of a small liver vessel only with strain imaging. In figure 11(b), the strain
imaging successfully detected the presence of a small vessel (approximately 1.2 mm diameter
measured from the B-mode image; see the horizontal arrows in figures 11(a), (b) and (d))
because the collapse of the small vessel under the deformation resulted in a bright spot in the
corresponding strain image. However, the same vessel was not visualized on the corresponding
elastic modulus image (figure 11(c)). To completely coagulate a liver tumor, it is desirable to
fully destruct some small blood vessels in and around the targeted tumor. Therefore, during
an ablation procedure, strain imaging (as well as the B-mode in this case) may have sufficient
sensitivity to detect these small vessels that have similar sizes to the liver vessel presented
in figures 11(a)–(d). The loss of resolution in EMI, probably due to both regularization and
large element size (approximately 0.75 mm), is also apparent in other relative elastic modulus
images such as figure 5(c).



2298 J Jiang et al

(a)

(c)
(d)

(b)

Figure 10. Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed
relative elastic modulus and (d) photography of gross pathology. The contours on (b)–(d) were
replicas of human observers’ boundaries of ablation zones. Arrows in (a) point to the thermal
ablation zone.

4. Discussion

One contribution of our work is that we applied an EMI technique (Jiang et al 2009) to visualize
in vivo thermal ablation zones. Since our ultimate goal is to use this modality to determine
whether complete coagulation of a targeted tumor has been achieved in a clinical environment,
it is significant to determine the fidelity of such a decision. Although a similar technique
has been applied to characterize pathologically confirmed in vivo breast lesions (Oberai et al
2009), their imaging results have not been compared to actual pathological findings of these
lesions. Our initial results showed good agreement of the area of thermal ablation zones
(correlation = 0.950, p-value < 0.001) between EMI measurements and gross pathology.
Compared to strain imaging (correlation = 0.853, p-value < 0.001), EMI results also showed
improved detectability of thermal ablation zones and reduced inter-observer variability both
in terms of calculated CNR values (see figure 4) and calculated measurement variability (see
tables 1 and 2). More importantly, in one case, the elastic modulus image (figure 10(c))
clearly indicated a bifurcated thermal ablation zone and thereby avoided a potential gross
pattern error in detection of the thermal ablation zone, compared to the corresponding strain
image (figure 10(b)). These enhancements will likely improve clinicians’ ability to evaluate
the ablation zone immediately after the ablation procedure. We also found that there were
subtle differences between corresponding EMI and pathological boundaries of ablation zones,
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(a) (b)

(c) (d)

Figure 11. Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed
relative elastic modulus and (d) photography of gross pathology. The contours on (b) and (c) were
replicas of human observers’ boundaries of ablation zones. Horizontal arrows in (a), (b) and (d)
point to a small liver vessel, while other arrows in (a) and (b) point to the thermal ablation zone.

Table 2. Area overlaps among three observers.

Averaged overlap Minimum Maximum
(mean ± standard deviation) overlap overlap

Gross pathology 0.82 ± 0.10 0.50 0.90
Strain 0.52 ± 0.21 0.03 0.78
Modulus 0.74 ± 0.09 0.59 0.91

because of limited resolution (approximately 0.75 mm element size) and sensitivity (noise in
measured displacements) in EMI. The small detected differences (e.g. 1.2–2.5 mm on average
in terms of dimension measurements; see table 3) between corresponding pathology and EMI
boundaries are less of a concern for a newly developed technique, given that liver ablation
tends to ablate an additional 5–10 mm of normal hepatic parenchyma to achieve a safe margin
(Nakazawa et al 2007, Kei et al 2008).

Our three observers missed nearly 40% of thermal ablation zones using conventional
B-mode images while the radiologist (AA) was able to identify all thermal ablation zones
during data acquisition (aided by the improved visualization of gas bubbles and improved B-
mode images). This reduced detectability could be explained as follows. First, the radiologist
has considerable experience and training for ultrasound-guided thermal ablation, while our
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Table 3. Summary of the measurement difference between EMI and gross pathology photos for
14 thermal ablation zones. ‘Abs’ stands for the absolute difference (units: mm for dimensions and
mm2 for area measurements) and ‘Rel’ stands for the relative absolute different with respect to
measurements obtained from gross pathology.

Mean difference
Standard
deviation

Maximum
difference

Minimum
difference

Abs (mm Rel Abs (mm Rel Abs (mm Rel Abs (mm Rel
or mm2) (%) or mm2) (%) or mm2) (%) or mm2) (%)

Short axis (strain) 2.0 16.0 1.2 7.8 4.2 33.7 0.5 5.1
Long axis (strain) 3.5 18.6 2.1 12.2 7.3 44.1 1.1 6.2
Area (strain) 40.3 22.3 27.2 14.7 103.5 52.1 6.1 2.3
Short axis (modulus) 1.2 9.6 1.0 7.9 3.6 30.8 0.4 2.5
Long axis (modulus) 2.5 13.4 1.6 8.6 5.3 27.8 0.3 1.5
Area (modulus) 26.7 14.8 20.3 9.1 83.2 31.4 1.4 0.5

human observers are researchers with several years of training in ultrasound-based elasticity
imaging. Second, the radiologist used high quality B-mode images produced by the imaging
system whereas offline B-mode images used by the three observers were reconstructed using
envelope detection of ultrasound echo data and are of poorer quality than the manufacturer’s
B-mode images. Furthermore, the echogenicity of the RF thermal ablation zone was variable
and could be hypoechoic, hyperechoic, isoechoic and/or mixed-echoic (Cha et al 2000, Liu
et al 2004). Consequently, it is possible that small echogenicity differences between normal
liver and ablated tissues were missed.

It is known that high CNRs in elasticity images (Bilgen 1999) indicate enhanced
detectability of targets. We plot the estimated overlaps (equation (6)) among three observers
with respect to estimated CNR values (equation (5)) in figure 12. The high inter-observer
variability (overlap < 0.5) in four thermal ablation zones (lower right quarter in figure 12)
could be attributed to low CNR values (<1.0) in the strain images. The exception is the
thermal ablation zone presented in figure 7 where the CNR and overlap are 0.36 and 0.60,
respectively, for the strain image shown in figure 7(b). Since only a small number of samples
were investigated, further studies are needed.

We also recognize that the calculated CNR values will be inevitably affected by the
selected dynamic range for strain and elastic modulus images. In this work, the dynamic
range was limited to an empirical range (approximately 1–8) for relative elastic modulus
images so that human observers could easily visualize the sharp transition (typically between
3 and 5 time stiffer than normal liver tissue (Kiss et al 2004)) of modulus values between the
thermal ablation zone and its normal surrounding liver tissues. For all strain images, since
the contrast transfer function between intrinsic elastic moduli and mechanical strain values
is highly nonlinear (Ponnekanti et al 1995, Bharat and Varghese 2006), it is more difficult to
determine an ideal dynamic range. We used both 2% of absolute strain (or four times of the
frame-average strain) and three times of the frame-average strain (data were not shown) as the
cutoffs. The differences in terms of area measurements between these two dynamic ranges
were insignificant. The dynamic range of 0–2% slightly improved the averaged absolute
percent error from 27.3% to 22.3%. Therefore, the dynamic range of 0–2% was reported
throughout this paper.

One study by our colleagues (Pareek et al 2006) investigated the utility of strain imaging
for visualizing thermal ablation zones for renal ablation in a porcine model. They reported
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Figure 12. A plot illustrating the distribution of area overlap values (equation (6)) measured
among three human observers with respect to the estimated CNR values (equation (5)) from strain
(cross) and relative elastic modulus (square) images.

statistically significant correlations (r = 0.93) between ablation area measurements of strain
imaging and pathology. In another recent study by researchers from the University of Rochester
(Zhang et al 2008), the sonoelastography technique was used to depict in vivo thermal
ablation zones created both by high intensity focused ultrasound (HIFU) and radiofrequency
ablation. In 18 thermal ablation zones created by radiofrequency ablation, they calculated a
correlation of 0.88 between the sono-elastographical area measurements and pathological area
measurements. Our correlation values (both strain imaging and EMI) were comparable with
these two studies.

Our results showed that strain imaging slightly overestimated (on average 6.7%) sizes of
the thermal ablation zones. From our theoretical study of numerical phantoms (Jiang et al
2007), we found that, because of the complex stress/displacement pattern induced by the
ablation applicator, elastic contrast was fairly low in axial strain images at points corresponding
to the lateral margins of thermal ablation zones. This phenomenon may interfere with human
observers’ ability to depict boundaries of the thermal ablation zones using axial strain images.

Consistent with the above-mentioned elasticity imaging studies (Pareek et al 2006, Zhang
et al 2008), EMI slightly underestimated (on average 8.9%) sizes of thermal ablation zones.
Furthermore, relative elastic contrast estimated by EMI between the untreated and ablated
tissue (1 cm2 regions at the center of each ablation zone) was only 8.37 ± 1.41. This value
was lower than our internal mechanical compression testing results (approximately 15) of
these same thermal ablation zones where 1 cm3 cubes of each ablation volume were tested
following a previously published protocol (Kiss et al 2004). Similar elastic contrast values
between treated and untreated porcine liver tissues were also reported by Zhang et al (2008).
This underestimation was much larger than what previously reported for similar techniques
(15–25% underestimation) in tissue mimicking phantoms (Oberai et al 2004, Doyley et al
2000). However, to spare the central cores of ablation zones for mechanical testing, all
ultrasound (therefore EMI) imaging planes were at least 1 cm away from central planes of
thermal ablation zones. It is logical to expect ablated tissue away from the needle applicator
to be less stiff than the ablated tissue near the needle applicator, because the tissue stiffness
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change is largely temperature dependent (Bharat et al 2005). Our ongoing research is to
address both underestimations (i.e. size and elastic contrast) by using a more intelligent
regularization method during inverse modulus reconstruction and improving the accuracy of
speckle tracking.

We used a DQM metric (Jiang et al 2006) as the basis to pre-select displacement
images. First, as demonstrated in figures 3(a)–(h), the quality of displacements affected the
outcomes of EMI because the displacement estimates provide fundamental information for
modulus reconstruction. Although good regularization methods (Doyley et al 2006) make the
reconstruction process more robust, good quality displacement measurements should enable
us to reduce the dependence on regularization. Second, we generally obtain a sequence of
displacement fields for EMI in a clinical setting. The use of DQM could be a method for
automated displacement data selection, thereby potentially eliminating user dependence.

We also found that, when grayscale elastic modulus images were used, human observers
tended to further underestimate sizes of thermal ablation zones. The underestimation increased
to 12.0% (up from 8.9% as described above). Compared to measurements made from color
elastic modulus images using the same dynamic range described in section 2.5, the correlation
of area measurements between grayscale elastic modulus images and gross pathology reduced
to 0.90 (down from 0.95 as described above). Further studies of this topic may help us
understand how to use appropriate color maps to improve the visualization of thermal ablation
zones (Rogowitz and Treinish 2005).

One limitation of our study is that ultrasound images were not automatically registered
with photographs of gross pathology. Since markers corresponding to respective imaging
planes were created on the surfaces of liver lobes during data acquisition, we are reasonably
confident that imaging planes of gross pathology should be in the vicinity of elasticity imaging
planes. However, during post-processing of gross pathology and ultrasound-related imaging
results, we were not able to find enough landmarks to estimate the errors of such manual
alignments. This limitation could be resolved in our future studies. In the literature, multiple
fiducial needles were used to register 3D images in and near ablation zones with sufficient
accuracy (approximately 1 mm error) (Lazebnik et al 2003). Another limitation with the
porcine model is that all thermal ablation zones were created in healthy parenchyma. The
basic assumption of using EMI to differentiate ablation zones is that protein denaturation due
to heating causes an increase of stiffness in ablated tissue (Kiss et al 2004). Because of this,
the presence of certain liver masses which may also be harder (e.g. cholangiocarcinomas (Yeh
et al 2002)) or softer (e.g. HCCs (Yeh et al 2002)) than normal liver tissue will likely make
this differentiation more difficult.

The modulus reconstruction method (equations (2)–(4)) described in this paper assumes
that both normal and ablated liver tissues are linearly elastic. Since nearly all soft tissue are
nonlinear (Fung 1993), using a hyper-elastic material model similar to the model used by
Oberai et al (2009) may improve our results at the expense of larger computational demands.
However, inverse reconstruction of nonlinear material properties as in their work (Oberai
et al 2009) might not be feasible because the large accumulative deformation (e.g. 15–20% of
compression) required would be difficult to achieve in the liver with electrode displacement
elastography.

Another limitation of our method is that we require a user to identify the location of
the ablation applicator so that the deformation induced by the applicator (i.e. the source of
mechanical stimulus) is a part of the boundary conditions.

In this study, open abdominal ablation procedures were performed. Clinically, approaches
for hepatic ablation include both percutaneous and surgical ablation (laparoscopy and open)
techniques. Although the percutaneous approach is preferred by many institutions because
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of its minimally invasive nature (e.g. less morbidity, complications and associated healthcare
costs), thermal ablation using surgical procedures including open-abdominal approach also
provides distinct advantages (Siperstein et al 1997, Burdio et al 2008). In a large number
of cases, hepatic ablation is still performed as open-abdominal procedures. With surgical
ablation techniques, the entire liver can be imaged with a high-frequency intra-operative
ultrasound transducer placed directly on the surface of the liver, resulting in better placement
for ablation applicators and subsequent lower recurrence rates (Burdio et al 2008). Although
we do not make any assumptions about the liver geometry, we use all displacement estimates
along edges of a user-defined ROI (see figure 3(a)) as a part of the boundary conditions. If
our method would be applied to percutaneous ablation, the presence of the body wall may
induce phase aberration, signal loss and distortion in ultrasound data, thereby resulting in
less accurate displacement estimation under certain conditions (Varghese et al 2001). If
these inaccurate displacements happen to be around the edge of the ROI, they would likely
degrade our ability to visualize the thermal ablation zone as the examples demonstrated in
figures 3(f) and (g). This use of EMI during open abdominal ablation, a less complicated
imaging condition, is a necessary first step to test its clinical utility. Our ongoing research is
to test the above-mentioned EMI method in the presence of a tumor background and using
percutaneous ablation.

Currently, the elastic modulus reconstruction algorithm is implemented using MATLAB
(Mathworks Inc., MA, USA) and provides an elastic modulus image in 15–20 min. However,
achieving a reasonably fast frame rate (20 s/frame) for EMI is indeed possible. The formation
of a 2D elastic modulus image in 30 s using advanced programming language C in conjunction
with a much less advanced personal computer (Pentium 1-GHz) was reported in by Oberai
et al (2004).

5. Conclusions

The use of our EMI method to visualize in vivo thermal ablation zones was presented. In all
14 cases, when compared to strain imaging, the elastic modulus images show equal or better
detectability in terms of visualization of the in vivo thermal ablation zones. Our results also
demonstrate that the proposed EMI method has the potential to accurately (correlation = 0.950
and mean error = 8.9%) depict boundaries of complex thermal ablation zones. This initial
result is encouraging and warrants further carefully planned studies involving a reasonably
large number of pre-clinical animal experiments, in particular, using tumor-bearing animal
models. If successful, the ultrasound-based EMI method can be a useful means for monitoring
and evaluating thermal ablation procedures involving human patients.
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