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Abstract

Mechanical properties of biological tissues are of interest for assessing the
performance of elastographic methods that evaluate the stiffness characteristics
of tissue. The mechanical properties of interest include the frequency-
dependent complex moduli, storage and loss moduli of tissues. Determination
of the mechanical properties of biological tissues is often limited by proper
geometry of the sample, as well as homogeneity of the stress—strain relationship.
Measurements were performed on in vitro canine liver tissue specimens, over a
frequency range from 0.1 to 400 Hz. Tests were conducted using an EnduraTEC
ELF 3200, a dynamic testing system for determining the mechanical properties
of materials. Both normal tissues and thermal lesions prepared by radio
frequency ablation were tested. Experiments were conducted by uniaxially
compressing tissue samples using Plexiglas platens larger than the specimens
and measuring the load response. The resulting moduli spectra were then fit to
a modified Kelvin—Voigt model, called the Kelvin—Voigt fractional derivative
model. The data agree well with the model and in comparing the results from the
normal tissue with that of the thermal lesions, the concept of a complex modulus
contrast is introduced and its applications to elastography are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Testing and modelling of the mechanical properties of biological soft tissues presents a
unique set of challenges, since many of them are nonlinear, viscoelastic and anisotropic
(Fung 1993). Since benign and malignant processes can both alter the mechanical tissue
properties, elastography, a new imaging modality, was developed to exploit this by relying
on the tissues’ elastic modulus as the major contrast mechanism (Dickinson and Hill 1982,
Wilson and Robinson 1982, Ophir et al 1991). However, the reliability of elastography partly
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depends on the accuracy of the values used for the elastic modulus. Despite this need for
determining the available modulus contrast, there is very little reliable data available on
soft tissue properties. Several groups have published findings on the mechanical properties
of soft tissues, and the methods vary as widely as the values reported (Suki et al 1994,
Arbogast and Margulies 1998, Erkamp et al 1998, Kim et al 1999, Lakes and Vanderby 1999,
Yuan et al 2000, Darvish and Crandall 2001, Schwartz et al 2001, Nasseri and Bilston 2002,
Lippert and Grimm 2003). In addition, the concentration in these reports was lung, tendon,
brain or kidney. There are fewer reports published concerning tissues such as liver, breast or
prostate, or even tissue mimicking materials (Chen et al 1996, Hall et al 1997, Krouskop et al
1998, Liu and Bilston 2000, Yeh et al 2002, Moffit et al 2002, Han et al 2003, Sammani et al
2003, Ishihara et al 2003).

Of the articles in the literature covering the viscoelastic properties for liver, breast and
prostate, two are of particular interest because the experimental methods used include dynamic
testing (Krouskop et al 1998, Liu and Bilston 2000). When a viscoelastic solid is subjected
to oscillatory strains, the modulus (both axial and shear) is a complex quantity, with both real
(elastic) and imaginary (viscous) components. Krouskop et al investigated the viscoelastic
properties of breast and prostate tissues (normal, benign and malignant) at low frequencies (0.1,
1.0, 4.0 Hz) (Krouskop et al 1998). The group reported elastic modulus values 18-500 kPa in
breast tissue for various amounts of precompression loading. Normal tissues had significantly
lower values than the cancerous tissues. Although values for the complex modulus were not
reported, they did note that the phase shift was less than 10°. The tangent of the phase angle
is the ratio of the imaginary component of the complex modulus to the real component. Such
a small phase angle indicates a very small viscous response in the tissues at the frequencies
reported.

Liu and Bilston investigated bovine livers and reported results for the complex shear
modulus in the range of 0.006-20 Hz, with the real component in the range of 1-6 kPa
(increasing proportionately to frequency), and the imaginary component in the range of several
hundred Pa for the same frequencies (Liu and Bilston 2000). They fit the frequency-dependent
moduli to a generalized five-element Maxwell model (Fung 1993).

The choice of model for fitting data seems to vary with the reports. In addition to Liu
and Bilston’s work, Nasseri et al measured the frequency-dependent modulus of porcine
kidneys and fit the data to a power law (Nasseri and Bilston 2002). Several other authors
have investigated the use of power law models (Bagley and Torvik 1983, Suki ef al 1994,
Szabo and Wu 2000, Chen ef a/ 2003). The three models described by Fung (1993) are
essentially linear, and these four references include justifications for using quasi-linear or
nonlinear models to relate the stress to the strain in biological tissue. In particular, they
introduce a fractional derivative model, and one of them (Suki et al 1994) carefully compares
the pros and cons of competing models (nonlinear constitutive equation, differential equations
with time-dependent coefficients, continuous distribution of time constants that are solutions
to integral equations and complex dynamic systems exhibiting self-similar properties).

In this study, canine liver samples were subjected to dynamic loading in the range of
0.1-400 Hz and the resulting force response was measured. The complex modulus was
calculated and fit to a Kelvin—Voigt fractional derivative (KVFD) model, which combines the
well-known Kelvin—Voigt (or Voigt) (KV) model with the fractional derivative approach as
described by others (Bagley and Torvik 1983, Suki ef al 1994, Chen et al 2003, Taylor et al
2001, 2002, 2003). Both normal tissue and thermal lesions, prepared by radio frequency (rf)
ablation, were tested and the results are shown in the following sections. The results of one
group have been recently presented at conferences describing the results of dynamic loading
experiments conducted on bovine liver (Moskowitz et al 2001, Taylor et a/ 2001, 2002, 2003).
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While the results presented agree well with the KVFD model, the low number of specimens
studied limits the statistical significance of the findings. This paper presents findings with a
higher level of statistical significance and fills a gap in the literature concerning the use of the
KVFD model applied to tissue.

2. Theory

The viscoelastic behaviour of biological tissue can be measured experimentally using a variety
of methods. One of these methods relies on applying a compressive displacement x(¢) to a
slab of material of uniform thickness, d(¢), and cross-sectional area A(?), and measuring the
force response F (). If the displacement is cyclic, that is, x(¢) ~ e/, then the cyclic strain
¢ is the displacement divided by the sample thickness. The resultant stress o is then the
force response divided by the cross-sectional area, in other words, 0 = F(¢)/A(t). For a
homogeneous, purely elastic medium, the basic constitutive equation relating the stress to the
strain, ¢, is

o = Ee, ()

where E is the Young’s modulus of the sample. Most tissues, however, are viscoelastic, and
therefore require additional terms to describe this behaviour. In a viscoelastic material, the
stress response depends not only on the strain but also on the strain rate, or something akin to
it, as will be illustrated below. Several viscoelastic models exist which incorporate this idea
(Fung 1993). The KV model is of particular interest in this research. The stress is related to
both the strain as well as the strain rate, £(t), by

o(t) = Ee(r) +né(), 2

where E is the material’s elasticity and 7 is the viscosity parameter. When a viscoelastic
material is subjected to cyclic strains, the stress response is necessarily cyclic, shifted by some
phase angle, and the Young’s modulus is replaced by a complex quantity, demonstrated in the
following derivation. Fung and others derive the relations more rigorously, so the derivation is
presented as a review. By taking the Fourier transform of both sides of equation (2), assuming
the stress, strain and strain rate are cyclic (i.e., &, 0 ~ e’ the KV model can be expressed in
the frequency domain:

o(w) = E¢(w) +ione(w), 3)

where, w is the angular frequency in rad s~!. Recalling the constitutive relation in equation (1),
the modulus can be expressed as a complex quantity,

E*(w) = E +iwn. 4

The real part of the complex modulus is known as the storage modulus, as it is an indicator
of the material’s ability to store energy. The imaginary part is known as the loss modulus,
related to the amount of energy lost through viscous processes. In addition, the ratio of the
imaginary to real part of the modulus is equal to the tangent of the phase angle §, the angle by
which the displacement leads the force response, and is called the loss tangent:

5 =1 5
tand = ik (5)

This model is attractive due to its simplicity and relatively easy solution, but several
researchers have noted that the model is insufficient in predicting the frequency-dependent
complex modulus for viscoelastic media (Bagley and Torvik 1983, Szabo and Wu 2000,
Suki et al 1994, Taylor et al 2001, 2002, 2003). The KV model accounts for both the storage
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and dissipation of energy (the elastic and viscous parameters, respectively), but it does not
model relaxation. The model can be expanded to a standard linear solid by including multiple
Kelvin—Voigt bodies in series, but the choice of an appropriate number of terms seems arbitrary
(Suki et al 1994). Therefore, an improved model is required, and for this study, the fractional
derivative representation of the KV model was chosen. It is almost as simple as the KV
model, but the solutions have demonstrated better agreements with empirical results, with the
major difference being that the second term in equation (2) is replaced with a fractional time
derivative, such that

o(1) = Ee(t) + nD[e(1)], (6)
where the fractional derivative operator D*[ ] is defined by
N 1 " x(7)
D¥[x (0] = dr, (N

Fd—a)Jo (t—10)
where I' is the gamma function, and x(¢) is an integrable, harmonic function. Fractional
derivatives behave similarly to power law functions when subjected to Fourier transforms.
The Fourier transform of the fractional derivative is given by

D x O]} = (w)*I[x (). ®)

Equation (8) is analogous to the Fourier transform of a derivative function. Taking the Fourier
transform of equation (6) and including the results from equation (8) the KVFD model in
frequency space is given by

o(w) = E¢(w) + n(iw)*e(w). )
The frequency-dependent complex modulus in equation (9) is expressed as

E*(w) = E + n(iw)*. (10)
Equation (10) can be expanded using de Moivre’s theorem (el = cos@ + isin@), and
recognizing that i = (e"/%)% = cos(wa/2) + isin(ma/2), the complex modulus can be
expressed as

o . . /T
E*(w) = [E+ncos (7) a)“]+1[nsm <7> a)"‘], (11

where the real and imaginary parts are shown within the brackets, and are denoted by E’ and
E"”, respectively. The phase angle term is now given by
® sin X
tand = —0 02 (12)
E + nw® cos ¢

Equations (11) and (12) sufficiently characterize the complex modulus as a function of
frequency for the specimens of interest, and it should be noted that they reduce to
equations (4) and (5), respectively for @ = 1 (i.e., the KV model). Equation (11) is of particular
interest, and it is this relationship that is investigated experimentally in the following sections.

3. Materials and methods

Canine livers were obtained from 8 to 9-month-old male hounds available from unrelated
studies in an adjacent lab. Measurements were made within 72 h after death. Samples without
lesions were cut from regions of tissue lacking any major vasculature or bile ducts using a
custom-made cylindrical cutting tool 20 mm in diameter, and then sliced to an appropriate
thickness (nominally 5 mm). These specimens were then placed in an isotonic saline bath at
room temperature prior to testing. Tissue lesions were prepared using radio frequency (rf)
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ablation using a Rita Model 1500 (Rita Medical Systems, Inc., Mountain View, CA), prior
to cutting to specimen size. Samples were subjected to three ablation protocols: 80 °C for
10 min, 90 °C for 10 min and 90 °C for 5 min.

After the samples had been placed in isotonic saline for at least 45 min to bring them
to room temperature, they were placed in the dynamic testing system, an EnduraTEC ELF
3220 (EnduraTEC, Minnetonka, MN). The ELF 3220 is a tabletop testing system capable
of dynamic testing frequencies from 107> to 400 Hz. The system is electromagnetic, and
relies on rare-earth magnets placed in the field created by stationary windings to produce a
linear force proportional to the field polarity and intensity. Acrylic platens were mounted to
both the mover and the load cell. The platens were then coated with mineral oil to promote
free-slip conditions between the specimen and the platens. The specimens were preloaded
via compression to 2% strain, and then compressed an additional 2%. The minimum and
maximum strain values were determined by a ramp test to be within the linear regime of
stress—strain response for all tissues. All measurements were performed at room temperature
(21.0 £ 1.5 °C). The specimen was sequentially loaded at frequencies from 0.1 Hz up to
400 Hz. For each testing frequency, the specimen was held at a mean strain level (3%) for
5 s, after which the mover oscillated at the testing frequency. The system oscillated for 3 s
prior to data acquisition to allow for transient decay and for the system to achieve the proper
amplitude. Values for the complex modulus were obtained using the dynamic mechanical
analysis (DMA) software for the ELF system.

Samples from ten animals were used for both the normal tissue and the lesion prepared at
90 °C and 10 min, and samples from five animals were used for the other two thermal lesion
protocols.

4. Results

The following section presents the results of the previously described experiments. A useful
way of expressing equation (11) is by taking the magnitude of E*(w):

[E*()] :\/E§+2E0n(2nf)“cos%+n2(271f)2°‘, (13)

where w has been replaced with 2w f. Figure 1 is a plot of |E*(f)| for the normal tissue
and three lesion types. Each data point represents the average value taken over the total
number of specimens tested for each condition (normal or lesion), and error bars represent
one standard deviation from the mean. The rapid fluctuations in the normal tissue modulus
at high frequencies are believed to be an electronic signal-to-noise ratio artefact in the force
measurement. At these frequencies, it is likely that the load cell cannot distinguish between
ambient system noise and the response due to the tissue. Note that this artefact exists only for
the normal, unablated tissue. It is possible that measuring the shear modulus will lead to more
reasonable results at high frequencies.

Figure 2(a) shows the real and imaginary parts of the complex modulus for normal tissue
and the thermal lesion prepared at 90 °C for 10 min. The modulus estimates were also averaged
over the number of trials. From this figure, it is clear that the real part of the complex modulus
is greater than the imaginary part at low frequencies by as much as a factor of 5 for the normal
tissue and a factor of 3 for the thermal lesion. The relationship between the real and imaginary
parts of the complex modulus is represented in figure 2(b) in terms of the loss tangent as a
function of frequency. Only data whose values are between 0 and 1 are presented, and the
frequency range is limited to 100 Hz. The loss tangent is comparatively flat over three decades
of frequency with a rapid rise at frequencies above 10 Hz.
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Figure 1. Plot of the magnitude of the complex modulus as a function of stimulating frequency
for canine liver tissue. Plots are shown for three thermal lesions prepared by rf ablation and for
normal tissue.
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Figure 2. (a) Plot of the real and imaginary parts of the complex modulus as a function
of stimulating frequency for normal canine liver and a thermal lesion prepared at 90 °C for
10 min (b) Plot of the phase as a function of stimulating frequency for normal canine liver and the
thermal lesion prepared at 90 °C for 10 min. Due to the presence of experimental artefacts at high
frequencies, the plot is truncated to 100 Hz.
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Figure 3. Plot of the magnitude of the complex modulus of the KVFD model as a function of

stimulating frequency with nonlinear least squares fitting results overlaid.

Table 1. Best-fit parameters for canine liver tissue using the KVFD model.

No. of
Tissue specimens Ey (Pa) n (Pa s%) a x2 R?
Normal 10 1995 £ 40 2310+ 54 0.169 £ 0.005 0.001 13 0.9832
Lesion, 90 °C, 10 min 10 26 600 + 780 4000 £ 390 0.500 £ 0.016 0.001 36 0.9940
Lesion, 90 °C, 5 min 5 16300 % 500 8000 £ 390 0.297 £ 0.007 0.000 13 0.9991
Lesion, 80 °C, 10 min 5 10000 + 320 3300 £ 210 0.400 £ 0.01 0.00051 0.9979
Table 2. Best-fit parameters for canine liver tissue using the KV model (o = 1).
No. of
Tissue specimens Ey (Pa) n (Pas) o X2 R?
Normal 10 5500 £ 250 130+ 1.3 1.0 0.03258 0.5329
Lesion, 90 °C, 10 min 10 37000 £ 2000 230 £ 13 1.0 0.03626 0.8346
Lesion, 90 °C, 5 min 5 31000 £ 1700 125+9 1.0 0.0409 0.70951
Lesion, 80 °C, 10 min 5 17000 £ 1100 101 +£7 1.0 0.0509 0.7756

The data in figure 1 were fit to equation (13) using the Levenberg—Marquardt method for

nonlinear least squares fitting, and are plotted in figure 3, once again as a function of /. The
high-frequency deviations from the best-fit curves for all cases is the result of generating a fit
in the frequency range of 0.1-100 Hz, the region which the data most closely conformed to
the model. Table 1 shows the best-fit parameters for each case, plus the x and R? values. The
deviations may also indicate the presence of experimental artefacts, similar to that reported by
Taylor (Taylor et al 2003). The data were also fit to the conventional KV model (¢« = 1), and
the parameters, X2 and R? values are shown in table 2.

Figure 4 is a plot of the real and imaginary parts of the complex modulus for the thermal
lesion prepared at 90 °C for 10 min (figure 4(a)), and for the normal tissue (figure 4(b)) fitted
to both the KVFD and KV models. The agreement between the data and the model is better for
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Figure 4. Plot of the real and imaginary parts of the complex modulus as a function of frequency
for (a) a thermal lesion prepared at 90 °C for 10 min and (b) normal tissue. Results from the least
squares fit for both the KVFD and KV models have been overlaid.

the real part than it is for the imaginary part, and there is a clear improvement in the agreement
between the data and the KVFD model compared to the KV model.

5. Discussion

The findings here accomplish two important things. First, this paper fills a gap in the literature
with respect to using a fractional derivative model to study the viscoelastic properties of a
biological system. The papers (Suki et al 1994, Chen et al 2003, Taylor et al 2001, 2002,
2003, Moskowitz et al 2001), form the bulk of the literature in this area. The strong empirical
agreement between model and data suggests a need to investigate the application of such
models to biological systems. The second accomplishment is that the fractional derivative
model may allow for an expansion of the elastographic model to account for viscoelastic
effects. This is seen clearly in a comparison of the data presented in tables 1 and 2. The
%2 values for the KVFD model (table 1) are at least one order of magnitude smaller than
their counterparts in for the KV model (table 2). Furthermore, the KVFD model predicts a
comparatively lower value for E than the KV model, and a comparatively higher value for n
than the KV model. In the KV model, the E is roughly two orders of magnitude larger than
n for all tissues, while the difference in the KVFD model is less than one order of magnitude.
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Figure 5. Plot of the complex modulus contrast as a function of stimulating frequency.

Finally, the relative errors on the fit parameters are reduced with the KVFD model. The
inclusion of a third parameter (namely, ) has a positive impact on the agreement of the model
to the data. Graphically, the results in figure 4 clearly indicate a stronger agreement between
data and model for the KVFD model than for the KV model. This is partly because the KV
model does not have strong frequency dependence, which is present in the data. The real
part of the complex modulus in the KV model is constant and the corresponding imaginary
part varies linearly. It should be noted that in fitting the data to the KVFD model, the
real part agrees better with the model than does the imaginary part. This is likely due to the
fact that the parameters were determined using the magnitude of the complex modulus, which
tends to be dominated by the real part, and therefore the contribution from the imaginary part
is less significant than the contribution from the real part. Future investigations will include
improving parameter estimation.

Besides the good agreement between model and data, comparison between the various
lesion types reveals that the tissue properties seem to be more sensitive to maximum
temperature rather than to ablation time. According to figures 1 and 3, the magnitude of
the complex modulus for the lesion prepared at 90 °C for 10 min is approximately 1.5 times
larger than that of the lesion prepared at 80 °C. The lesion prepared for only 5 min (at 90 °C)
has a modulus that is only slightly lower than the 10 min counterpart. Also, in considering the
results in figure 2, the lesion prepared at 90 °C for 10 min is not only stiffer than the normal
tissue, as seen in figure 2(a), but inspection of the loss tangent as a function of frequency
(figure 2(b) shows that it is also more viscoelastic over all frequencies, although the difference
is relatively small (0.3 for the lesion and 0.2 for the normal tissue) at the lowest frequency.
The rapid rise in loss tangent at frequencies above 10 Hz is attributed to the corresponding
rapid rise in the loss modulus compared to the slow rise in storage modulus.

The major contributing factor to image contrast in elastography is the modulus contrast,
i.e., the ratio of the elastic moduli of the inclusion to the background. An elastographic model
that incorporates viscoelastic effects requires a new definition of the modulus contrast. The
elastic modulus contrast is defined as

C=—, (14)
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where E;, and Ep are the elastic moduli of the inclusion and background, respectively
(Kallel et al 1996). It should be noted that Kallel refers to the modulus contrast as the
‘true target elasticity contrast’. Replacing the E; and E with their complex counterparts gives
a complex modulus contrast. Developing a viscoelastic model analogous to Kallel’s is beyond
the scope of this paper, but introducing a complex modulus contrast is an important first step.
Recalling equation (11) and defining the real part as £’ and the imaginary part as £’ the
complex modulus contrast is defined as

. EJER+E/Ey EJE;—E|E}

CTEE T IRR
where |E[’;|2 = Eg + Egz.

Figure 5 shows a plot of the magnitude, as well as the real and imaginary parts of C;(f)
with the assumption that the E, and E7 are determined by the best-fit parameters for the three
lesions and E; and E}; are determined by the best-fit parameters for the normal tissue. In
principle, it is possible for the imaginary part of equation (15) to be negative, but its impact
on image contrast is not yet clear. What is clear from the graph is that the C; for the lesion
prepared at 90 °C for 10 min has the largest contrast. |C;| also possesses a local minimum
near 0.3 Hz. The dip in the curve is due largely to the difference in the « values for the two
tissues (as shown in table 1). The lesion’s a-value is 2.7 times larger than the normal tissue’s.
For the other lesion at 90 °C, the ratio of the «-values is 2.1 and the minimum contrast is
at 1 Hz. Finally, for the 80 °C lesion, the ratio is 2.3 and the minimum contrast is around
0.2 Hz. This may suggest that in determining the contribution of viscoelastic properties to
image contrast, the elastogram may be best acquired at quasi-static to low frequency (less than
10 Hz) conditions. Although C; generally increases with frequency, the merits of utilizing
high frequency oscillating stimuli for elastography have not been considered here, and are
beyond the scope of this paper. The high-frequency experimental artefacts present in normal
tissue data currently limit the accuracy in this regime. It is expected that as the artefacts are
removed, a model for high frequency elastography can be developed and improved.

. 5)

6. Conclusion

The frequency-dependent complex modulus has been measured for in vitro canine liver,
for both normal tissue and thermal lesions prepared by rf ablation. Results were fit to the
conventional Kelvin—Voigt and Kelvin—Voigt fractional derivative models. There was excellent
agreement between the data and the KVFD model, particularly at frequencies less than 100 Hz.
The data deviated from the model at higher frequencies, possibly due to machine resonance or
other artefacts. More accurate high frequency data may be obtained by measuring the shear
stress—strain relation instead of the axial stress—strain relation. Future efforts will include
a more in-depth investigation of the relationship between the ablation conditions and the
viscoelastic properties of the tissue.
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