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Abstract—A theoretical analysis of the correlation be-
tween radio-frequency (RF) echo signal data acquired from
the same location but at different angles is presented. The
accuracy of the theoretical results is verified with computer
simulations. Refinements to previous analyses of the corre-
lation of RF signals originating from the same spatial lo-
cation at different angular positions are made. We extend
the analysis to study correlation of RF signals coming from
different spatial locations and eventually correlation of RF
signal segments that intersect at the same spatial location.
The theory predicts a faster decorrelation with a change in
the insonification angle for longer RF echo signal segments.
As the RF signal segment becomes shorter, the decorre-
lation rate with angle is slower and approaches the limit
corresponding to the correlation of RF signals originating
from the same spatial location. Theoretical results provide
a clear understanding of angular compounding techniques
used to improve the signal-to-noise ratio in ultrasonic para-
metric imaging and in elastography.

I. Introduction

Pulse-echo ultrasound images, as well as many forms
of parametric ultrasound images [1]–[13], are subject

to statistical fluctuations caused by the random locations
of scatterers that contribute to the instantaneous backscat-
tered echo signal. When the scatterers are densely dis-
tributed, radio-frequency (RF) echo signals obey Gaus-
sian statistics, while the envelope of the signal follows a
Rayleigh distribution [14], [15]. Thus, the ratio of the mean
echo signal at any point to its standard deviation is fixed
at 1.91 for sonograms. The resultant speckle decreases con-
trast detectability on B-mode images and leads to signif-
icant uncertainties of parameters derived for quantitative
images [16].

To partially overcome this limitation, researchers have
proposed the use of spatial and frequency compounding
in which data for a particular spatial location are aver-
aged from different look directions or different frequencies
within the transducer bandwidth [17]–[19]. Some B-mode
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equipment manufacturers have adopted spatial compound-
ing for use with linear and curvilinear array systems, and
this appears to improve contrast detectability in many in-
stances [20], [21]. Our group has recently introduced angu-
lar spatial compounding techniques for the production of
parametric images of attenuation, scatterer size, and strain
[16], [22]–[25]. Angular spatial compounding can signifi-
cantly improve the statistical properties of these images,
affecting the tradeoff between spatial resolution and im-
age signal-to-noise ratios (SNR). Following the analysis by
O’Donnell [9], performing angular compounding by trans-
lating the aperture by an amount equal to the aperture
size improves the SNR of B-mode images by a factor of
1.67 (2.8 independent views).

Spatial compounding is most effective when signals to
be averaged are uncorrelated. Numerous studies have been
done to investigate spatial correlations in speckle fluctua-
tions in medical ultrasonic images [14], [15], [26]–[29], and
the salient results are summarized by Wagner et al. [15].
These prior approaches use an impulse response, or point-
spread-function (PSF), to describe the ultrasound system
and subsequent modeling of the ultrasound signals. Other
investigators start from an accurate representation of the
ultrasound system with equations formulating field calcu-
lation [30], [31]. However, various approximations are then
utilized to obtain simplified representations for the signal
correlation, basically reverting back to the PSF represen-
tation. Most of these derivations lead to the same expres-
sion for the signal decorrelation during spatial compound-
ing as used by Wagner et al. The K-space representation
proposed by Walker and Trahey [30] offers insight into the
sources of ultrasound signal correlation. However, it can be
viewed as the Fourier transformation of the time-domain
PSF approach. Walker and Trahey [30] compare their re-
sults with those of Wagner et al. to prove the validity of
their theory. Zemp et al. [31] apply an impulse response
approach, expressing the impulse response in an analytical
form, with ultrasound field calculations taken into account
to model ultrasound signals. Their primary contribution
is to define a function called spatial-sensitivity-function
(SSF) and point out its relationship to the PSF. However,
applying their method to this problem requires a numeri-
cal calculation of the ultrasound field rather than yielding
an analytical expression for the problem.

The previous studies were directed mainly toward B-
mode image compounding, where the theories developed
were for the study of correlations between echo signals
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acquired from the same spatial location but different in-
sonification angles. In parametric imaging of scatterer size
[4], [16], integrated backscatter [12], [13], or spectral slope
[32], the displayed data at each spatial location are esti-
mated from a segment of RF echo data representing the
region around it. When viewed at another angle, only the
signal at the location where two RF lines intersect follows
theories applicable to B-mode compounding. Since other
sections of the RF data segment undergo greater decorre-
lation, previous theoretical results do not provide a com-
plete solution. Therefore, a theory is needed to calculate
the correlation of RF data segments at different insonifica-
tion angles applicable for parametric image compounding,
and this is the topic of this paper.

This paper is organized as follows. We first revisit the
approach used by Wagner et al. [15] to derive the correla-
tion between ultrasound echo signals that arise from points
where angled beam lines intersect. We then establish gen-
eral equations that describe the correlation between signals
obtained with intersecting beams, accounting for contribu-
tions to each signal from locations away from the intersec-
tion point. With this result, we obtain the correlation be-
tween RF echo signal segments for different insonification
angles, which is the main contribution of this paper. The
correlation between signal segments from parallel beam
lines also emerges with our general approach. Differences
between our expressions and those of Wagner et al. [15] are
discussed. Finally, simulation studies are presented that
verify the theoretical expressions, and these demonstrate
close correspondence between decorrelation vs. beam an-
gle for simulated data and from theoretical curves. Factors
that affect the correlation vs. beam angle curve are also
explained with the help of simulations.

II. Theory

A. Correlation Between Signals from the Same
Spatial Location

As illustrated in Fig. 1, a transducer insonifies and in-
terrogates a region in its focal zone containing scattering
particles uniformly distributed over the scattering volume
in random positions. The cumulative signal amplitude s at
transducer position 1 from scatterers in the medium can
be written as:

s1 =
∑

i

|Ti| |p1,i| exp(jϑi), (1)

where subscript i refers to an individual scatterer, |Ti| rep-
resents the magnitude of the scattering amplitude from the
ith particle, |p1,i| is the magnitude of the pulse-echo point
spread function from the scatterer at position i received by
transducer 1, and exp(jϑi) represents the combined phase
of |Ti| and |p1,i|. Now the transducer is translated a dis-
tance b and rotated or steered to insonify the same scatter-
ing region as location 1. We establish our coordinates by
setting the transducer shift vector as the x axis, the vector

Fig. 1. Schematic illustration of a transducer insonifying scatterers at
position (x0, z0) from transducer location 1. The transducer is then
translated to location 2 and rotated or steered to view the same
position.

perpendicular to the shift direction as the z axis, and the
midpoint of the shift as the origin. The point where the
axes of both beam lines intersect has coordinates (x0, z0).
The angle between the beam axis at transducer position
1 and the z axis is φ1, and the angle between the axis at
position 2 and the z axis is φ2. For the signal received from
the ith scatterer at (xi, zi), a phase difference 4πbxi/riλ0
exists between signals for the two transducer positions,
where λ0 is the wavelength at the center frequency, and
ri =

√
x2

i + z2
i + b2/4 can be seen as the average distance

from the scatterer to the transducer surface for the two
locations. The factor of two in the phase accounts for the
two-way pulse-echo path. The cumulative signal strength
at position 2 can then be written as:

s2 =
∑

i

|Ti |p2,i|| exp(jϑi) exp(4πjbxi/riλ0). (2)

The cross-correlation between the signals acquired at
transducer positions 1 and 2 is given by:

〈s1s
∗
2〉 =

∑
i

|Ti|2|p1,i| |p2,i| exp(4πjbxi/riλ0). (3)

We now invoke separability of the point spread function to
divide it into lateral and range (axial) components. For the
ith scatterer at (xi, zi), the lateral distances to the beam
axis for transducer positions 1 and 2 are, respectively,

l′n = (xi − x0) cosφn − (zi − z0) sinφn, (n = 1, 2).
(4)

Similarly, the axial distances to the intersection point
(x0, z0) are:

l′′n = (xi − x0) sinφn + (zi − z0) cosφn, (n = 1, 2).
(5)
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Eq. (3) becomes:

〈s1s
∗
2〉 =

∑
i

|Ti|2|p′(l′1)‖p′′(l′′l )‖p′(l′2)‖p′′(l′′2 )|

× exp(4πjbxi/riλ0), (6)

where p′ represents the lateral beam spread function, and
p′′ represents the axial spread function. For a rectangular
aperture, for example, the lateral point spread function at
the focus or in the far-field can be written as:

p′(x) = sin2(πf0x)/(πf0x)2, (7)

where f0 = D′/rλ0, D′ is the effective transducer aperture,
and r is the focal distance, r = z0/ cosφ.

If we assume that the ultrasound pulse transmitted by
the transducer has a Gaussian envelope with characteristic
width σz , then p′′ can be expressed as:

p′′(z) = exp(−z2/2σ2
z). (8)

Going to a continuous representation, xi and zi become x
and z, and the summation in (6) becomes a 2-D integral
about x and z. Thus,

〈s1s
∗
2〉 = B′′

∫∫
|p′(l′1)‖p′′(l′′1 )‖p′(l′2)‖p′′(l′′2 )|

× exp(4πjbx/rλ0)dxdz, (9)

where

l′n = (x − x0) cosφn − (z − z0) sinφn, (n = 1, 2)
(10)

l′′n = (x − x0) sinφn + (z − z0) cosφn, (n = 1, 2)
(11)

r =
√

x2 + z2 + b2/4, (12)

and B′′ is a normalization factor. An analytical closed-
form solution for (9) is difficult to obtain. Thus, it is nec-
essary to either resort to numerical solutions or apply ap-
proximations to simplify the expression.

Let us compare this result with that of previous authors.
For the same geometrical arrangement, the expression of
Wagner et al. [15] (using our notation) for the echo-signal
cross-correlation can be written as:

〈s1s
∗
2〉 = B′′

∫
|p′(x)|2 exp(4πjbx/z0λ0)dx.

(13)

Eq. (13) follows the notation of a Fourier transformation
(FT). The correlation function is therefore an FT of the
square of the PSF:

ρ =
[
FT

{
|p′(x)|2

}]
f=2b/λ0z0

. (14)

For a rectangle aperture, this is a convolution of two tri-
angular functions. This convolution was calculated ana-

lytically by O’Donnell and Silverstein [29] via the contour
integral approach. The solution is given by:

ρ(x) =

⎧⎪⎨
⎪⎩

1 − 6x2 + 6x3 x ≤ 1/2
2(1 − x)3 1 ≥ x > 1/2,

0 x ≥ 1
, (15)

where x is the fractional displacement of the aperture,
x = b/D′. Note that this equation implies that the angu-
lar decorrelation of signals arising from the intersection of
two beams is independent of the insonification frequency.
Although the beam width varies with frequency and would
affect the volume of insonified scatterers, the relative phase
of echo signals from individual scatterers also varies with
frequency. Thus, it would appear that the two effects can-
cel, leaving the signal decorrelation a function of the aper-
ture size only. We will show later in this paper that this
behavior does not exist for angular decorrelation analysis
for extended RF signal segments, however.

Wagner et al. [15] separate the PSF into lateral and
range components, as |pi| = |p′(x)‖p′′(z)|. Implicit in this
decomposition is the assumption that the tilt angle of the
transducers can be neglected, i.e., φ1,2 = 0 in (4) and (5).

In (9), the phase term exp(4πjbx/rλ0) contains a vari-
able r, which is a function of x and z. Since only scat-
terers close to the intersection point of the beams con-
tribute to the signal, we can approximate the phase term
as exp(4πjbx/z0λ0). We can then perform the integration
in the lateral and range direction separately as in the Wag-
ner et al. paper [15] and obtain the expression in (13)–(15).

B. Correlation Between Signals Arriving from
Different Spatial Locations

The analysis described above applies to only one type
of B-mode compounding, where signals from the same spa-
tial location viewed from different angles are compounded.
However, if we simply translate the transducer without
tilting or steering to insonify the same location, where we
are interested in the correlation of adjacent parallel beam
lines, the derivation in Section II-A will not apply. Also, in
parametric imaging modalities, such as scatterer size imag-
ing [4], [5], [12], [13], [16], attenuation coefficient imaging
[7], [12], [13], and elastography [10], parameters are esti-
mated using gated segments of the RF signal. When we
perform angular compounding in these imaging modali-
ties, we must be aware that the signal decorrelation will
arise not only from different insonification angles but also
from different targets being interrogated when the gated
region extends beyond the center of rotation.

To derive an expression that takes into consideration
different target locations, we use the setup illustrated in
Fig. 2. Two transducers separated by a distance b scan
different locations separated by distance a. The cross-
correlation between signals from transducer 1 and trans-
ducer 2 can be written as:

〈s1s
∗
2〉 = B′′

∫∫
|p′(l′1)‖p′′(l′′1 )‖p′(l′2)‖p′′(l′′2 )|

× exp(4πjbx/rλ0)dxdz, (16)
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Fig. 2. Schematic illustration of a transducer translated a distance b
and then rotated or steered to view the same position (x0, z0). Here
signals arising from scatterers at various depths near the beam inter-
section point are considered. The origins of the signals are separated
by a distance a.

which is the same as (9). However, the lateral and axial
distances now become:

l′1,2 = (x ± a/2) cosφ1,2 − (z − z0) sinφ1,2 and
(17)

l′′1,2 = (x ± a/2) sinφ1,2 + (z − z0) cosφ1,2.
(18)

If we adopt the same approximation used for (14) and (15),
we obtain:

ρ(a, b) = [FT {|p′(x − a/2)‖p′(x + a/2)|}]f=2b/λ0z0
.
(19)

The above expression is the generalized cross-correlation
function that takes into consideration different insoni-
fication angles as well as different scatterer locations.
Note that unlike (14), numerical integration is required
to obtain the exact form of the cross-correlation function
from (19).

C. Correlation of RF Signal Segments that Intersect
at the Same Spatial Location

In the case of parametric imaging, gated segments of the
echo signal are applied. The tissue parameter at location O
is estimated from RF segments illustrated with thick lines,
as shown in Fig. 3. The RF signal received by transducer
1 is s1(t), and the RF signal received by transducer 2 is
s2(t). A segment is selected using a window, for example,
a rectangular window or a Hanning window. Normally, the
same window is used to select both segments. The window

Fig. 3. Schematic illustration of the gated RF data segment acquired
as a transducer is translated and rotated or steered to view the same
position O. The thick line represents the gating window for the RF
segment with length L. The RF segments acquired are represented
as s1(t) and s2(t).

function will modulate the signal intensity in the segment
selected. Attenuation and focusing effects will also affect
the signal intensity, and this will weigh the contribution of
each scatterer to the correlation between angled RF signal
segments. These effects can be included in the w(t) term
so that the intensity of s(t) can be taken as constant with
depth. Thus, the cross-correlation between two gated RF
signal segments acquired at different insonification angles
can be written as:

ρ1,2 = 〈∑t2
t=t1 w2(t)s1(t)s∗

2(t)
〉

[〈∑t2
t=t1 w2(t)s1(t)s∗

1(t)
〉 〈∑t2

t=t1 w2(t)s2(t)s∗
2(t)

〉]1/2 .

(20)

The overall signal intensity viewed at different angles
should be the same, provided the distance between the
transducer and the sample volume remains constant and
the change in beam width due to the changing aperture
projection at different angles can be neglected. The de-
nominator in (20), therefore, becomes:〈

t2∑
t=t1

w2(t)s(t)s∗(t)

〉
. (21)

The ensemble average operator can be moved inside the
summation. As mentioned above, the signal intensity vari-
ations due to attenuation and focusing effects are included
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in the w(t) term so that the intensity of s(t) is constant
with depth. Eq. (21) becomes

t2∑
t=t1

〈
w2(t)s(t)s∗(t)

〉
= I ·

t2∑
t=t1

w2(t), (22)

where I = 〈s · s∗〉 is the mean signal intensity.
Replacing the summation with an integral, (20) be-

comes:

ρ1,2(2φ1) =

t2∫
t1

w2(t) 〈s1(t)s∗
2(t)〉 /Idt

t2∫
t1

w2(t)dt

=

L/2∫
−L/2

w2(ξ)ρ(2ξ sinφ1, 2z0 sinφ1)dξ

L/2∫
−L/2

w2(ξ)dξ

,

(23)

where L is the length of the RF segment, and the ρ in-
side the integral is the correlation of signals resulting from
different locations and from different insonification angles,
respectively. It can be either the numerical result of (16),
or its approximated version (19). ξ is the distance from
points in the volume giving rise to the RF segment to the
rotation center, and z0 is the distance from the line sep-
arating the transducers to the rotation center. 2ξ sinφ1
and 2z0 sinφ1 are terms corresponding to a and b in (19),
respectively.

D. Correlation of Two Parallel RF Echo Signal Segments

Eq. (19) can also be used to calculate the correlation
between signals acquired from two parallel beam lines in
the same image. Under this circumstance, we have a =
b. The correlation between signals from two beam lines
acquired from an aperture separated a distance b, as in
linear array imaging is:

ρ(b) = [FT {|p′(x − b/2)‖p′(x + b/2)|}]f=2b/λ0z0

=
∫

|p′(b − x)‖p′(b + x)| exp(4πjbx/z0λ0)dx. (24)

This form is slightly different from the one in Wagner’s
paper [15] since he assumed that the ultrasound image is
formed by the convolution of scatterers with the system
PSF, and he neglects any differences in signal phase when
viewed from two different angular positions.

However, we have to point out here that our formula
does not produce results that are significantly different
from the expression in Wagner’s paper [15] when using
transducer and medium parameters applicable to medi-
cal ultrasound. This is probably due to the fact that the
phase term changes slowly compared to the PSF term un-
der these imaging conditions. However, (24) is the more
complete form of the expression.

III. Simulations

Computer simulations were used to verify the validity
of the theoretical expressions derived in this paper. We
generated simulated RF signals and compared the cross-
correlation results obtained at different angular positions
with theory. The simulations were performed by convolv-
ing random scatterers with a PSF calculated with a field
calculation code described previously [33]. For the present
study, we modeled a linear array consisting of elements of
size 0.15 mm by 10 mm, with a center-to-center distance of
0.2 mm. A Gaussian-shaped pulse with a center frequency
of 5 MHz and a −6 dB bandwidth of 50% was used as the
incident pulse. We set both the transmit and receive fo-
cuses at 30 mm. The aperture used was 15 mm so that the
F -number was 2. The pulse-echo PSF was calculated with
the frequency-domain algorithm [33]. For the purpose of
these simulations, the same PSF was applied throughout
the signal segment, which facilitated the integration in (23)
for comparison. Note that this simulation approach does
not correspond to the actual ultrasound imaging process
where a fixed transmit focus and a dynamic receive focus
are used. Under those conditions, the PSF would be a sinc
function for most depths, except near the transmit focus
where it would be a sinc-square function. Also, the actual
imaging process will involve a dynamic aperture. Although
our simulation program [33] can successfully simulate all
of these features, for the purpose of this paper where we
are interested only in verifying the theoretical equations,
a simplified model is sufficient as long as we use the same
assumption in both the theory and the simulation.

A uniform phantom was simulated by modeling a ran-
dom distribution of 50 µm polystyrene beads in a medium
that has a speed of sound of 1540 m/s. The attenuation
of the phantom was set at zero so that the signal inten-
sity would be uniform for all depths. The scatterer num-
ber density was set at 9.7 per cubic millimeter, which is
more than sufficient for a Rayleigh distribution of the echo
signal envelope since Rayleigh statistics apply for approx-
imately 10 or more scatterers per resolution cell [15]. The
frequency dependence of the backscatter coefficient of the
50-µm polystyrene beads was calculated using Faran’s the-
ory [34] and was incorporated into the PSF calculation.
The modeled phantom dimensions were 60 mm (width)
by 50 mm (height) by 10 mm (thickness). After model-
ing the echo signals for a single pulse-echo sequence, the
phantom model was rotated around its center to obtain
RF signals at different insonification angles. This rotation
operation maintained the locations of all scatterers relative
to each other, so changes in phase and amplitude of return-
ing echoes during the rotation are accurately represented.
The rotation angle was varied from 0 to 90 degrees, with
an angular increment of 0.5 degrees. In an actual linear
array, beam steering cannot be approximated by simply
rotating the same beam because the effective aperture may
change slightly in the beam-steering process. However, as
discussed in the previous paragraphs, the approach is suf-
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Fig. 4. B-mode-like display of echoes from along a single beam line
passing through the rotation center of a phantom as the phantom is
rotated over a 90-degree angle. The image would be the same if a
transducer were rotated around the phantom to view the center of
the phantom. The farther away from the rotation center, the faster
the texture varies as the phantom is rotated.

ficient to verify the theoretical derivation presented in this
paper.

IV. Results

The RF signals obtained at each insonification angle
were envelope-detected and log-compressed. They were
then formatted to form a B-mode-like image, and this is
shown in Fig. 4. This image is obtained using only the
central beam line for each acquisition angle. Thus, the x-
axis is the rotation angle, and each vertical line represents
the B-mode signals viewed for the central line at that an-
gle. The difference in texture at different depths is due to
the difference in relative lateral displacements of reflectors
during rotation, from the beam’s eye view. It is obvious
from the image that echo signals arriving from points far-
ther away from the rotation center decorrelate at a faster
rate than signals at points near the rotation center.

We ran simulation experiments using various lengths
of RF segments centered at the rotation center, and then
computed the normalized cross-correlation function to ob-
tain correlation coefficient estimates. A rectangular win-
dow was used to segment the RF segment. Since we
avoided signal intensity variations due to attenuation and
focusing effects in our simulations, the window function
w(t) ≡ 1. A correlation coefficient curve obtained us-
ing 0.39-cm-long simulated RF segments is plotted in
Fig. 5(a). Each data point represents the average of cross-
correlation coefficients from a number of RF segment pairs
corresponding to the same insonification angle difference.

For example, the data point at 1.5 degrees represents the
average of all the cross-correlation coefficient estimates
from RF segment pairs obtained at 0 degree and 1.5 de-
grees, 1.5 degrees and 3 degrees, etc. The data points at
larger angular shifts are derived from fewer averaged cor-
relation coefficient data points and are, therefore, less re-
liable. The error bars span plus and minus two standard
deviations from the mean cross-correlation coefficient. The
theoretical prediction, obtained by numerically calculating
(23), is plotted as a dashed line. The correlation coeffi-
cient curves obtained using simulated RF data segment
lengths of 0.78 cm, 1.57 cm, and 3.14 cm are plotted in
Fig. 5(b), (c), and (d), respectively. Although these seg-
ment lengths are arbitrary, they demonstrate that there is
excellent agreement between simulation results and theo-
retical predictions at all RF segment lengths.

V. Discussion

In angular B-mode compounding, where B-mode images
are acquired from different view angles and superimposed,
the signals to be compounded arrive from approximately
the same spatial location, ensuring no loss in spatial resolu-
tion providing the aperture is not decreased. Decorrelation
is incurred among the signals from different view angles
because the relative positions of the scatterers within the
resolution cell change as the beam rotates.

Compound echo data acquisition and display can also
reduce the noise in parametric ultrasound data, but at
the expense of additional processing time required for pa-
rameter estimations along angular directions. The most
efficient use of processing time would occur if the data ac-
quired from different angular directions were statistically
independent. Since a significant correlation exists between
echo signals acquired from adjacent beam lines or small
angular increments on an ultrasound scanner, it is useful
to understand how these system factors affect the correla-
tion between signals.

This paper extends the work of Wagner et al. [15] by
considering the decorrelation of signals arising from ex-
tended data segments, as are often used in parameter es-
timations. The decorrelation of RF segments with beam
angle depends on the segment length, as shown in Fig. 5.
Theoretical predictions of the normalized correlation coef-
ficient values for different lengths of RF signal segments
are shown in Fig. 6. Here the decorrelation of signals that
arise from the point where the beams intersect is indi-
cated by the “0 cm” line. The functional dependence ex-
hibited by the 0-cm line is predicted by previous theory
[15], [29]. As expected, when points farther away from the
rotation center are included in the gated data segment,
the signal decorrelates with angle at a faster rate. With
shorter RF segments, the cross-correlation curve slowly
approaches the “zero-length” limit, predicted by (15). If
the data window used in parametric imaging is in the mil-
limeter range, we could use (15) for estimating the degree
of correlation with shifts in the insonification angle.
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(a) (b)

(c) (d)

Fig. 5. Comparison between theoretical prediction and simulation result of the correlation coefficient of RF segments acquired at different
insonification angles. Results are shown for RF segment lengths of (a) 3.14 cm, (b) 1.57 cm, (c) 0.78 cm, and (d) 0.39 cm. The dashed line
denotes theory, while the solid circles and error bars are calculated from simulations.

As the length of the RF segment increases, the scatter-
ers included in the gated segment are farther from the rota-
tion center. Then, as the insonification angle changes, new
scattering sources are interrogated, especially for depths
near the edges of the gated region, causing the signal to
decorrelate faster. This increase in decorrelation is due
primarily to the ultrasound beam interrogating different
spatial regions, which is similar to the decorrelation that
would occur if data from adjacent beam lines on an ultra-
sound image were averaged. Therefore, using longer RF
segments for angular compounding may not be an opti-
mum choice because of the subsequent reduction in the
spatial resolution. The optimum length of the RF segment

has to be determined by computing the SNR improvement
from the correlation coefficient of the parametric estimate
vs. insonification angle curves and the corresponding spa-
tial resolution reduction from the area that the RF seg-
ment sweeps during angular compounding. In this paper,
we derived only the correlation coefficient of RF segments
vs. the insonification angle. For different parametric imag-
ing methods, the calculation of the parameter of inter-
est from the RF data segment will differ. Therefore, each
parametric modality needs to be studied individually to
optimize the angular compounding approach.

Signal decorrelation from the same spatial location has
a special property in that it is independent of the insonifi-
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Fig. 6. Theoretical demonstration of decorrelation vs. insonification
angle for different RF data segment lengths.

cation frequency. Although an increase in frequency would
result in more rapid phase changes with small changes
in insonification angle, the concomitant narrower beam
would restrict the scatterers contributing to the ultrasound
signal at any transducer angle closer to the rotation center.
These two opposite effects cancel, making the result insen-
sitive to frequency. However, when we consider the decor-
relation of two finite-sized RF data segments, the decorre-
lation effects do increase with ultrasound frequency. Fig. 7
plots the expected decorrelation during rotation of a RF
segment of length 0.78 cm for different frequencies. The
RF segment was assumed to be at a 3.0-cm depth in the
medium, and the aperture of the transducer was taken to
be 1.5 cm. As illustrated in the figure, the higher the in-
sonification frequency, the faster the decorrelation of RF
signal pairs. The explanation for this behavior is that the
major contribution of decorrelation of the RF segment
comes from the signal decorrelation at both ends of the
RF segment, for which relative scatterer positions change
most rapidly with small changes in beam view directions.
At these locations, the more restricted lateral extent of
the higher frequency beams does not lessen the decorre-
lation with angle, as it does when scatterer positions are
restricted to those closer to the center of rotation. The RF
segment correlation curve will approach the correlation of
signals from the same spatial location, illustrated in the
dotted curve in Fig. 7, as the insonification frequency de-
creases. This is due to the concomitant increase in the
beam width that negates the larger amount of separation
caused by rotation. [|p′(x−a/2)‖p′(x+a/2)| in (19) can be
approximated as |p′(x)‖p′(x)|; thus (19) reduces to (14)].

Similar behavior is seen when the aperture of the trans-
ducer is changed. Fig. 8 plots theoretical correlation curves
for different transducer apertures. The horizontal axis is

Fig. 7. RF signal segment correlation coefficient vs. beam angle for
different insonification frequencies. The dotted line is the correlation
coefficient of the RF signal obtained from the same spatial location.

the translation b, as a fraction of the aperture size. The
RF segment studied here is again centered at a 3.0-cm
depth, and the length is 0.78 cm. The insonification fre-
quency used is 5 MHz. For the correlation of signals ob-
tained with the aperture translated and steered to view the
same spatial location, the curve is the same for different
aperture sizes in terms of translation as a fraction of aper-
ture size. We plotted it as the dotted curve in Fig. 8. For
the correlation of finite-sized RF signal segments at differ-
ent insonification angles, only a very small aperture, such
as the 5-mm aperture shown in the figure, which produces
a wide beam, has correlation curves that approximate the
dotted curve. For larger apertures, the correlation curve
falls off quickly with angle because of the narrower beam.
The analysis is similar to that described in the previous
paragraph.

VI. Conclusions

We have derived a theoretical expression for the decor-
relation of ultrasound RF echo signals as the insonification
angle changes. This work is based on previous theoretical
results presented by Wagner et al. [15], where the analy-
sis was restricted to a target at a fixed depth. We have
refined their expression by avoiding most approximations
used. Under certain approximations, a closed-form analyt-
ical expression can be derived. However, for parametric
imaging we require a theoretical expression that takes into
account both the insonification angle and the target loca-
tions imaged. The theoretical expressions obtained under
these conditions have to rely on numerical solutions with
and without the simplifying approximations.

The theoretical prediction (23) matches computer sim-
ulations very well. This theory is useful for compound-
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Fig. 8. Theoretical RF signal segment correlation coefficient values
for different transducer aperture sizes (D). The dotted line is the
correlation coefficient obtained where the RF signal is obtained from
the same spatial location.

ing during parametric imaging, where the parameters are
calculated from a RF echo signal segment. The theoreti-
cal prediction can help in finding optimum compounding
schemes for parametric imaging. However, the relationship
between the correlation between two RF signal segments
and the ensuing correlation between parameters estimated
from these segments must also be determined. The rela-
tionship may be different for different parametric imaging
modalities, reflecting the effects of different signal process-
ing schemes. In the light of this theoretical framework, we
have studied the scatterer size imaging [35] and attenua-
tion imaging [36] and found good agreement.
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