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Abstract—In elastography, tissue under investigation is
compressed, and the resulting strain is estimated from the
gradient of displacement estimates. Therefore, it is impor-
tant to accurately estimate the displacements (time-delay)
for good quality elastograms. A principal source of error in
time-delay estimation in elastography is the decorrelation
of the echo signal due to tissue compression (decorrelation
noise). Temporal stretching of the postcompression signals
has been shown to reduce the decorrelation noise at small
strains. In this article, we present a deconvolution filter
that reduces the decorrelation even further when applied
in conjunction with signal stretching. The performance of
the proposed filter is evaluated using simulated data.

I. Introduction

Ultrasonic imaging methods based on tissue elasticity have
recently been investigated for diagnosis of disease [1]–[8].

Ultrasonic techniques to estimate strain due to externally ap-
plied compression have been developed [5], [6]. In these meth-
ods, the local tissue displacements are estimated from the time-
delays of gated pre- and postcompression echo signals, which
are then used to estimate the axial strain. In elastography [5],
time-delays are estimated from the location of the peak of the
cross-correlation function between the windowed pre- and post-
compression echo signals.

The quality of elastograms is highly dependent on the qual-
ity of time-delay estimates. Time-delay estimation in elastog-
raphy is corrupted primarily by two factors: random noise
(electronic and quantization), and decorrelation due to tissue
compression. We previously investigated the effect of tempo-
ral stretching [9]–[11] of the postcompression echo signals, and
found it to significantly reduce axial decorrelation [9]. Correla-
tion is improved because temporal stretching of the postcom-
pression signal effectively realigns the scatterers. However, it
also stretches the point-spread function (PSF) of the system
that is involved in the generation of the echo signal, resulting
in some residual decorrelations.

As we show in this paper, this can become a major prob-
lem. However, in the current applications of elastography, these
errors may be masked by larger errors. Elastography involves
tissue motion in three-dimensions. However, until recently, non-
axial motions have been ignored. Efforts are now underway to
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reduce decorrelation due to nonaxial tissue motion, and thus
reduce the dimensionality of the problem. The errors due to
PSF deformation become significant when the dimensionality
of the problem is reduced. In this article, we demonstrate the
correlation enhancement obtained by processing the postcom-
pression signal with a deconvolution filter following the tempo-
ral stretching step.

We propose an inverse filter approach for the deconvolution.
It can be shown that the inverse filter is a special case of the op-
timal Wiener filter that can be used in deconvolution problems.
The Wiener filter can be expressed as follows [12]:

HWiener(f) =
P ∗(f)

|P (f)|2 + Sn(f)
Sr(f)

where P (f) is the transfer function of the system, Sn(f) is the
noise power spectral density, and Sr(f) is the power spectral
density of the random distribution that the scatterers are part
of. Depending on the signal-to-noise ratio (SNR), there can be
two extreme cases of this Wiener filter [13]. When the SNR is
very high, Sn(f)/Sr(f) can be neglected, and P ∗(f) cancels
from the numerator and denominator, resulting in the classical
inverse filter we have used in this paper:

Hinverse(f) =
1

P (f)
.

However, when noise dominates the signal, |P (f)|2 can be ne-
glected. Then the filter approaches a matched filter:

HMatch(f) = P ∗(f)
Sr(f)
Sn(f)

.

In elastography, the associated SNR in the sonographic sig-
nals is generally high, and high sonographic SNR is necessary
for relatively error-free displacement estimates for strain esti-
mation. Thus, the inverse filter approach may be valuable in
elastography.

II. Motivation

A. The Nonlinear Relation Between the
Correlation Coefficient and the SNR

In elastography, strain is estimated from the gradient of
displacement estimates. In pure time-delay estimation models,
only noise corrupts the displacement estimates. In elastography,
we need to compress the tissue in order to produce tissue strain;
the compression itself introduces decorrelation in the postcom-
pression signal. Thus, displacements need to be estimated in
the presence of signal decorrelation, in addition to noise. This
decorrelation is independent of the level of random noise, and
earlier works have shown that decorrelation effects can be ex-
pressed as an SNR measure [14], [15]. A highly nonlinear re-
lationship exists between decorrelation and the corresponding
SNR. We have plotted the corresponding SNR vs. the correla-
tion coefficient (ρ) in Fig. 1. We observe that, with the increase
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Fig. 1. Illustration of the effect of increasing the correlation coefficient
on the corresponding SNR. Note the highly nonlinear behavior of the
curve.

Fig. 2. Plotting the graph in Fig. 1 for ρ ≥ 0.98. At ρ close to unity,
the corresponding SNR increases very rapidly with the increase in ρ.

in ρ, the SNR increases much faster. In Fig. 2, we replot the
figure for ρ ≥ 0.98 only. We observe that at ρ close to unity,
even a small improvement in ρ results in a significant increase
in the SNR. As ρ increases by very small amounts from 0.96 to
0.98 to 0.99 to 0.995, the SNR more than doubles each time.
It was reported earlier that, when correlation drops to below
0.93, phase ambiguities set in, sharply reducing the maximum
achievable elastographic SNR (SNRe) [16]. Thus, in partially
decorrelated signals, reducing decorrelation is very important,
especially when ρ is close to 0.93 and also close to unity.

B. Three-dimensional Motion in Elastography

The tissue undergoes a three-dimensional motion when sub-
jected to external compression. However, until recently, all the
work in elastography has implicitly assumed axial only tissue
motion; and the effects due to nonaxial motion remained unac-
counted for. Two recent papers [17], [18] have investigated the
issue of nonstationarity associated with elastography. Kallel et

al. [18] have shown that, after the postcompression echo sig-
nal is temporally stretched, the effective correlation between
the pre- and postcompression echo signals can be expressed as
follows:

ρ = ρE × ρL × ρA, (1)

where ρE , ρL, ρA are the elevational, lateral, and axial correla-
tion coefficients, respectively. In typically ignoring the nonaxial
movements of the tissue, we make the implicit (albeit incor-
rect) assumption that ρE = ρL = 1. The axial decorrelation
(ρA 6= 1) in the temporally stretched postcompression signal
may have several sources: 1) frequency dependent attenuation
in conjunction with changes in the beam and other effects, and
2) stretching of the PSF as shown in Alam and Ophir [9]. Thus
the axial correlation ρA can be expressed as:

ρA = ρA1 × ρA2, (2)

where ρA1 and ρA2 are the correlation coefficients from sources
1 and 2, respectively. Note that ρE , ρL and ρA1 refer to three
sources of nonstationarity in elastography. The correction for
the 3-D motion is very difficult because of the unpredictable
nature of the nonstationarities. Konofagou and Ophir [19] have
recently shown that, even under carefully designed boundary
conditions, the nonaxial displacements are poorly controlled
and may not be well behaved. This is due to the fact that,
even small changes in boundary conditions can have substantial
effects on the nonaxial displacements, which in turn can have
even bigger effects in the achievable correlations. Small details
such as how the sample is held, how lubricated the compressor
and the floor are, or whether the compressor is perfectly parallel
to the floor may have unexpected consequences. Recent works
[19]–[21] have shown that it is possible to dramatically reduce
these errors, but further work is necessary to fully develop these
methods.

After all the decorrelations due to various nonstationari-
ties have been removed (ρE = ρL = ρA1 = 1), the decorre-
lation due to the stretching of the PSF will still be present
(ρA2 6= 1), especially at larger strains (however, stretching is
essential because the improvement from stretching is greater
than the degradation from the change in the PSF, and without
stretching, the displacement estimates contain very large errors
at large applied strain). Thus, the decorrelation from PSF de-
formation will be a major source of performance degradation
(as will also be shown in this paper) after other sources of the
nonstationarity in the three dimensions are removed or con-
siderably reduced. A suitably designed deconvolution filter can
further reduce this decorrelation.

III. Theory

A. Deconvolution Filtering of the Temporally
Stretched Postcompression Signal

In a homogeneous target, the zero-mean pre- and postcom-
pression echo signals can be modeled in one-dimension by:

r1(t) = s1(t) + n1(t) = s(t) ∗ p(t) + n1(t), (3a)

r2(t) = s2(t) + n2(t) = s
(
t

a
− t0

)
∗ p(t) + n2(t),

(3b)
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and the temporally stretched postcompression signal can be
expressed as:

r3(t) = r2(at) = s3(t) + n3(t) = as(t− t0) ∗ p(at) + n3(t).
(3c)

where s(t) is the zero-mean one-dimensional scattering distri-
bution of the elastic target, p(t) is the impulse response of
the ultrasonic system, n1(t) and n2(t) are uncorrelated ran-
dom noise and ∗ denotes convolution. The quantity n3(t) is a
time-scaled version of n2(t). The quantity a is related to the
tissue strain ε by the simple relationship:

a = 1− ε. (4)

From (3a) and (3c), we observe that in r3(t) the effect of
scatterer compression has been compensated, but the system
impulse response also has been temporally stretched. Never-
theless, temporal stretching generally improves the correlation
between the pre- and postcompression signals [9]. It is because
the scatterer profile varies faster than the impulse response, and
thus compression of the former introduces more decorrelation
than stretching of the latter.

Evaluating the Fourier transform of r1(t) and r3(t):

R1(f) = S1(f) +N1(f) = S(f)P (f) +N1(f), (5a)

and

R3(f) = S3(f) +N3(f) = S(f)P
(
f

a

)
e−j2πft0 +N3(f).

(5b)

Under noiseless conditions,

R3(f) = S(f)P
(
f

a

)
e−j2πft0 . (6)

If we define a filter H(f) = P (f)
P (f/a) for deconvolving R3(f),

then,

R3−deconv.(f) = R3(f)H(f) = S(f)P
(
f

a

)
e−j2πft0

P (f)
P (f/a)

= S(f)P (f)e−j2πft0 = S1(f)e−j2πft0 . (7)

Thus,

r3−deconv.(t) = s1(t− t0) = r1(t− t0). (8)

Thus, under ideal circumstances (no noise or attenuation), it
is possible to reconstruct the stretched signal perfectly as long
as the system transfer function P (f) is known and it does not
have any zeroes in the frequency range of interest. Note that for
a Gaussian impulse response, the filter is a high frequency em-
phasis filter as will be evident in (13). Now, with noise present,
if the deconvolution filter is applied,

R3−deconv.(f) = R3(f)H(f) = {S3(f) +N3(f)} P (f)
P (f/a)

= S1(f)e−j2πft0 +N3(f)
P (f)
P (f/a)

. (9)

The above equation can be written a little differently:

R3−deconv.(f) = {S3(f) +N3(f)}H(f)

= S3(f)

{
1 +

N3(f)
S3(f)

}
H(f)

= S3(f)

{
1 +

1
SNR(f)

}
H(f). (10)

Fig. 3. Illustration of deconvolution filtering.

Fig. 4. Illustration of deconvolution filtering, a threshold is applied
because of noise, and the resulting spectrum has a smaller support.

By examining (10), we observe that care should be taken
when applying this deconvolution filter to noisy signals. The
deconvolution filter should be applied only in the frequency
range where the SNR is greater than unity. Amplification in
the region in which noise dominates the signal is not desirable.
Thus, the deconvolution filter should be designed as follows:

H(f) =

{
P (f)
P (f/a) , |S3(f)| ≥ |N3(f)| and P (f/a) 6= 0

0, otherwise. (11)

The concept of deconvolution filtering is illustrated in Figs. 3
and 4. In Fig. 3, we show the ideal case. Fig. 1(a) shows P (f)
and P (f/a). Fig. 3(b) shows P (f/a) and H(f). Fig. 3(c) shows
the original and equalized spectra, and they are virtually iden-
tical. Fig. 4 has the same pictures, but, this is for a case in
which the noise in the signal raised the threshold. The result-
ing equalized transfer function has a smaller support than the
original. However, the original and the equalized spectra are
virtually identical in the nonzero region.

It can be shown that, for a system with a Gaussian PSF,

p(t) = 2
√

2πσe−2(πσt)2 sin(2πf0t), (12)
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the deconvolution filter can be expressed as:

H(f) =
P (f)
P (f/a)

= e
(1−a2)f2

2(aσ)2
sinh(ff0/σ

2)
sinh(ff0/aσ2)

. (13)

B. Deconvolution Filtering of the Cross-correlation Functions

We may improve the performance of the time-delay esti-
mator using a deconvolution filter if the local strain and the
system impulse response are known. Because both filtering and
correlation are linear operations, the order can be reversed. If
the cross-correlation function is passed through the filter H(f),
then

G13−deconv.(f) = G13(f)H(f)

= G11(f)
P (f/a)
P (f)

e−j2πft0
P (f)
P (f/a)

= G11(f)e−j2πft0 ,
(14)

where G13(f) is the cross-spectrum between the precompres-
sion echo signal and the temporally stretched postcompression
signal and G11(f) is the autospectrum of the precompression
signal. It must be noted that reversing the order of filtering
and correlation operations can be done for unnormalized corre-
lation functions only. Normalized correlation functions are not
linear, and so the order of operations cannot be reversed.

C. Sensitivity Analysis with Respect to the
Center Frequency and Bandwidth

When a tissue is investigated using an ultrasonic pulse, both
the center frequency and bandwidth change with the propaga-
tion of the pulse. The center frequency decreases with depth
due to frequency dependent scattering and attenuation. The
ultrasonic pulse elongates away from the focus due to varying
arrival time from various sections of the transducer, resulting
in reduced bandwidth. If deconvolution filtering has a strong
dependence on accurately specifying the center frequency and
bandwidth, then its practical utility is dubious. The depen-
dence of H(f) on f0 and σ can be shown to be:

∂H

∂f0
≈ f

σ2

(
1− 1

a

)
e

(1−a2)f2

2(aσ)2 e(1−1/a)ff0/σ
2
,

and

∂H

∂σ
≈ −2

{
ff0

σ3

(
1− 1

a

)
+

(1− a2)f2

2a2σ3

}
× e

(1−a2)f2

2(aσ)2 e(1−1/a)ff0/σ
2
.

At f0 = 5 MHz, 60% bandwidth and 1% strain
∂H/∂f0
H(f)

∣∣∣
f=f0

= −0.035/MHz and ∂H/∂σ
H(f)

∣∣∣
f=f0

= −0.0015/MHz.

These values change to −0.0709/MHz and −0.0060/MHz,
respectively, at 2% strain. At 5% strain, these values are
−0.1827/MHz and −0.0401/MHz, respectively. Thus, the de-
convolution filter is more sensitive to changes in the center fre-
quency than the bandwidth. But, the sensitivity is small enough
to not drastically affect the performance. We plot H(f) at 2%
strain for some variations in values of center frequency and
bandwidth used in the deconvolution filter when the true val-
ues were the 5 MHz and 60% in Figs. 5 and 6. Clearly, we do

Fig. 5. Illustration of changes in the deconvolution filter when the
center frequencies are not accurate. f0 = 5 MHz, BW = 60%.

Fig. 6. Illustration of changes in the deconvolution filter when the
bandwidths are not accurate. f0 = 5 MHz, BW = 60%.

not observe significant variations in the filter as a result. We
normally do not expect any drastic changes in the center fre-
quency and bandwidth due to frequency-dependent attenuation
and focusing effects.

IV. Simulation

We performed 1-D simulations using MATLAB1 to verify
the theory. We simulated a line of uniformly spaced random
amplitude (Gaussian distributed) scatterers within a trans-
ducer beam (10 scatterers per wavelength). For the simulated
round-trip PSF, the center frequency was 5 MHz, and the noise
equivalent bandwidth was 60%. The RF A-line was computed
by convolving the scatterer profile with the PSF. The A-lines
were sampled at 500 MHz. The scatterer spacing was then ap-
propriately reduced to simulate tissue compression, and the RF
A-line was recomputed. Then, this RF A-line was temporally
stretched by the factor by which the scatterer spacing had been
reduced. We have added white noise to the RF A-lines to get a
predetermined sonographic SNR. And, an appropriate decon-
volution filter was applied on the temporally stretched post-
compression A-line. To test how well deconvolution filtering
performed, we computed the autocorrelation function for the

1MATLAB is a registered trademark of The MathWorks, Inc., Nat-
ick, MA.
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Fig. 7. Correlation functions: 5% strain, SNR = 60 dB.

Fig. 8. Auto and cross-spectra: 2% strain, SNR = 60 dB.

precompression A-line C11(f) and the cross-correlation func-
tion between the pre- and the postcompression A-lines C12(f),
between the precompression A-line and the stretched postcom-
pression A-line C13(f), and also between the precompression
A-line and the deconvolution filtered postcompression A-line
C13−deconv.(f). A window size of 5.12 µs was used for the cor-
relation operations. These correlation functions were averaged
over 16 realizations. Fourier transformations of the correlation
functions were taken to get the auto- and cross-spectra. We
also computed the correlation coefficient for all the cases, with
window size of 2 µs, averaged over 32 realizations.

V. Results

The results for the 1-D simulation described in the previous
section are shown in Figs. 7–14. the SNR was 20 dB. The un-
normalized cross-correlation function can mask the difference
between the signals due to averaging of the uncorrelated noise
implicit in the correlation operations, and thus, may hide some

Fig. 9. Auto and cross-spectra: 5% strain, SNR = 60 dB.

Fig. 10. Improvement in correlation due to deconvolution: 5% strain,
SNR = 60 dB.

dissimilarities between them. Computing the correlation coeffi-
cients between different signals reveals the true similarities be-
tween the signals and has been performed. However, for the sake
of completeness, we begin by plotting the unnormalized corre-
lation functions and cross-spectra. In Fig. 7, correlation func-
tions are plotted for an applied strain of 5%. At this strain level,
stretching cannot fully compensate for the tissue strain, and a
visible difference exists between the cross-correlation function
between the precompression and temporally stretched post-
compression signals C13 and the autocorrelation function for
the precompression signal C11. However, the cross-correlation
function between the precompression and deconvolution filtered
temporally stretched postcompression signals C13−deconv. is al-
most indistinguishable from C11. We reemphasize that the ap-
parent small improvement in the correlation due to stretching
can be misleading, because even a small increase in the cor-
relation may significantly improve the estimator performance,
especially at lower strains [14]. The sonographic SNR was 60 dB
for the cases shown in Figs. 7–10. In Fig. 11,
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Fig. 11. Improvement in correlation due to deconvolution: 5% strain,
SNR = 20 dB.

Fig. 12. Improvement in correlation due to deconvolution. Center fre-
quency used in the filter = 5 MHz, true center frequency = 4.5 MHz.

Figs. 8 and 9 show the corresponding spectral behavior at
2% and 5% strains. In Fig. 8, at 2% strain, the cross-spectrum
for the unstretched case G13 is a slightly lowpass filtered ver-
sion of the autospectrum G11, due to the stretching of the im-
pulse response itself. The cross-spectrum for the deconvolution
filtered case G13−deconv. and the autospectrum G11 becomes
virtually indistinguishable. The deconvolution filter continues
to perform well at 5% strain, shown in Fig. 9. At higher strains,
the performance has shown degradation; however, those cases
are not shown for the sake of brevity and lack of utility of very
large strains.

If uncorrelated noise is added to two identical signals, the un-
normalized correlation function averages out the uncorrelated
noise in the signals, and may not fully show the true dissim-
ilarities between them. Indeed, differences between the cases
with and without deconvolution filtering are present but are not
striking in Figs. 7–9. To expose their true dissimilarity, we may
have to evaluate the normalized correlation coefficient. So, we
also have computed the correlation coefficients between differ-
ent signals to evaluate the true similarities between the signals

Fig. 13. Improvement in correlation due to deconvolution. Bandwidth
used in the filter = 60%, true bandwidth = 55%.

Fig. 14. Improvement in the strain filters due to deconvolution. The
area under the strain filter may be regarded as a generalized quality
measure of an elastogram. The same correlation values from Fig. 10
were used to generate the strain filters. Note that a moderate increase
in the correlation translates into a large increase in the achievable
elastographic SNRe. Note also that the onset of the Barankin bound
is shifted toward higher strains.

and plotted them vs. strain. At a sonographic SNR of 60 dB
(Fig. 10), the improvement in the correlation from stretching
and deconvolution filtering is apparent. The correlation coeffi-
cient falls below the important threshold of 0.93 [16] at strains
lower than 2% when stretching is not applied, higher than 10%
when stretching is applied, and higher than 15% when decon-
volution filtering is applied. Thus, deconvolution filtering gives
us a sizable boost in maximum usable strains. At all strain lev-
els ρ13−deconv. > ρ13 > ρ12. As demonstrated in Figs. 1 and 2,
even small increases in correlation coefficients can have a sig-
nificant effect on the SNRe. We will demonstrate the effect that
deconvolution filtering will have on the upper bounds of SNRe

in another graph. At a sonographic SNR of 20 dB (Fig. 11), all
the correlation values are slightly smaller. But, the deconvolu-
tion filter still improves the correlation for strains up to ∼ 15%.
Above that strain, the deconvolution filter in fact degrades the
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performance. However, in elastography, our interest is mainly
limited to lower strains, and the sonographic SNR values are
generally high.

To apply the deconvolution filter properly, we need to know
the P (f), and especially its center frequency. Because the PSF
is generally nonstationary due to the effects of decorrelation
and frequency dependent attenuation, a perfect correction for
the changes in P (f) may not be possible. However, as discussed
in the theory section, even if there are some errors in the as-
sumption of center frequency and bandwidth, deconvolution fil-
tering produces perceivable improvements as long as the values
used are not very different from the true values. These effects
are shown in Figs. 12 and 13, which are otherwise similar to
Figs. 10 and 11. In Fig. 12 the deconvolution filter uses a cen-
ter frequency of 5 MHz, whereas the true center frequency is
4.5 MHz (10% drop). For this case, the deconvolution filter is
still able to improve signal correlation up to about a strain of
12%. Beyond this, stretching alone performs better. In Fig. 13
the deconvolution filter uses a bandwidth of 60%, whereas the
true bandwidth is 55% (8% drop). However, the incorrect band-
width does not have a very adverse effect on the deconvolution
filter. The results support the conclusions in Section III that
bandwidth has a less pronounced effect on deconvolution filter-
ing.

To demonstrate the true effect of deconvolution filtering, we
used the correlation values for Fig. 11 and converted them into
a maximum achievable SNRe measure using the strain filter
formulation [16]. The strain filter consists of an analytical and
graphical representation of the “quality” of strain estimates
vs. strain for a set of system and processing parameters. The
width of the strain filter provides the dynamic range and its
height the respective SNRe value of the estimated strain. The
strain filter has three identifiable regions: 1) the Cramér-Rao
lower bound (CRLB) region, where the displacement estima-
tion errors are mainly jitter errors around the true peak; 2) the
Barankin bound (BB) region, where phase ambiguity (or peak
errors) introduces large errors in the displacement estimation,
resulting in sharply lower SNRe (this also generally denotes
the high strain end of the elastographic dynamic range); and
3) the constant variance (CV) region, where both amplitude
and phase ambiguities occur and the estimates are largely use-
less. The strain filters with and without deconvolution filtering
are shown in Fig. 14. Deconvolution filtering produces two clear
effects. The seemingly modest increase in the correlation coeffi-
cient derived from deconvolution filtering results in a significant
increase in the height of strain filters. The improvement in the
SNRe is at all strain values, but it is especially pronounced for
strains larger than 2%. This could be significant, because some-
times it is necessary to apply larger strains to increase the elas-
tographic dynamic range [22]. It also may be important when
elastographically visualizing soft areas that incur large strains.
A second effect is that the maximum strains that can be mea-
sured with a reasonable SNRe also increases as the Barankin
region is shifted toward higher strains. If we compare Figs. 10
and 14, we observe that, although Fig. 14 shows the improve-
ment from deconvolution filtering much more clearly, the same
effects also are present in Fig. 10. Overall, the improvement in
the strain filter, and hence in the underlying elastograms, due
to deconvolution filtering is quite significant, even due to the
corresponding small improvements in the signal correlation.

VI. Conclusion

Echo-signal decorrelation is one of the major limiting factors
in strain estimation and imaging. Elastography involves tissue
motion in all three dimensions. Recent works [18]–[21] suggest
that it is possible to significantly improve the elastograms by
paying attention to the three-dimensional nature of tissue mo-
tion. Various methods have been proposed to reduce decorrela-
tions from the nonaxial tissue motion [19]–[21]. When these ef-
fects are corrected for, the residual decorrelation resulting from
the deformation of the PSF in the temporal stretching opera-
tion becomes significant. We have presented a deconvolution
filter that can compensate for the undesired stretching of the
PSF. The 1-D simulation results show the effectiveness of de-
convolution filtering. The deconvolution filter improves the cor-
relation between the precompression and stretched signals. We
have also demonstrated using strain filters (that describes the
upper bounds in SNRe) computed from the same correlation
values that these seemingly modest improvement in correlation
from deconvolution filtering results in significant improvement
in SNRe.

We have investigated the effect of small errors in estimating
the center frequency and bandwidth on deconvolution filtering.
Both were found to increase the errors only by a small amount,
but error in bandwidth was found to introduce less error. We
speculate that this is due to the fact that the energy at the tail
ends of the spectrum is low to begin with. Small changes in the
bandwidth mostly affect the tail ends, and do not change the
deconvolution filter significantly.

In inhomogeneous tissues, local strains vary, and thus a
global uniform temporal stretching is not ideal. We have pro-
posed a novel estimator in which the proper local stretch factor
is estimated using an iterative procedure [23], and deconvolu-
tion filtering may be useful here. However, we also have ob-
served that a uniform temporal stretching generally produces
low-noise elastograms unless both the following conditions are
true: the applied strain is large, and strain contrast is large. In
fact, it is an “efficient” strain estimator because it is not com-
putationally intensive and produces low-noise elastograms in
most cases. Inverse filtering may be useful in the future in con-
junction with temporal stretching to further reduce the noise
in the elastograms after the methods to correct for the 3-D
motion [19]–[21] are fully developed.
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[11] I. Céspedes and J. Ophir, “Reduction of image noise in elastog-
raphy,” Ultrason. Imaging, vol. 15, pp. 89–102, 1993.

[12] M. Fatemi and A. C. Kak, “Ultrasonic B-scan imaging: Theory
of image formation and a technique for restoration,” Ultrason.
Imaging, vol. 2, pp. 1–47, 1980.

[13] B. Haider, P. A. Lewin, and K. E. Thomenius, “Pulse elonga-
tion and deconvolution filtering for medical ultrasonic imaging,”
IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp.
98–113, 1998.
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