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Multiresolution Imaging in Elastography
Tomy Varghese, Member, IEEE, Mehmet Bilgen, Member, IEEE, and Jonathan Ophir, Member, IEEE

Abstract—The range of strains that can be imaged by
any practical elastographic imaging system is inherently
limited, and a performance measure is valuable to evalu-
ate these systems from the signal and noise properties of
their output images. Such a measure was previously formu-
lated for systems employing cross-correlation based time-
delay estimators through the strain filter. While the strain
filter predicts the signal-to-noise ratio (SNRe) for each tis-
sue strain in the elastogram and provides valuable insights
into the nature of image noise, it understated the effects
of image resolution (axial resolution, as determined by the
cross-correlation window length) on the noise. In this work,
the strain filter is modified to study the strain noise at mul-
tiple resolutions. The effects of finite window length on sig-
nal decorrelation and on the variance of the strain estima-
tor are investigated. Long-duration windows are preferred
for improved sensitivity, dynamic range, and SNRe. How-
ever, in this limit the elastogram is degraded due to poor
resolution. The results indicate that for nonzero strain, a
window length exists at which the variance of strain estima-
tor attains its minima, and consequently the elastographic
sensitivity, dynamic range and SNRe are strongly affected
by the selected window length. Simulation results corrob-
orate the theoretical results, illustrating the presence of a
window length where the strain estimation variance is min-
imized for a given strain value.

Multiresolution elastography, where the strain estimate
with the highest SNRe obtained by processing the pre- and
post-compression waveforms at different window lengths is
used to generate a composite elastogram and is proposed
to improve elastograms. All the objective elastogram pa-
rameters (namely: SNRe, dynamic range, sensitivity and
the average elastographic resolution—defined as the cross-
correlation window length) are improved with multiresolu-
tion elastography when compared to the traditional method
of utilizing a single window length to generate the elas-
togram. Experimental results using a phantom with a hard
inclusion illustrates the improvement in elastogram ob-
tained using multiresolution analysis.

I. Introduction

Elastography is a method for imaging the elastic
properties of biological tissues in vivo, and elastograms

are gray scale images that depict the distribution of strains
in tissue [1]–[3]. The elastograms are formed by a process
involving two steps (Fig. 1). First, the tissue is compressed
externally to generate an internal strain field. Second, ul-
trasonic echo signals before and after compression are ac-
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Fig. 1. The block diagram of the strain filter, indicating the filtering
of the tissue strains by the strain filter allowing the prediction of the
elastogram parameters. The process of generating an elastogram can
be viewed as a two-step process: first, tissue is compressed to obtain
a strain field, and second, ultrasonic echo correlation techniques are
used to estimate the axial strain field. The contributions of the sig-
nal processing and ultrasound system parameters are indicated as
inputs into the strain filter. Improvements in estimator performance
due to other algorithms are introduced through enhancements in the
correlation coefficient.

quired and processed. The elastic modulus distribution
and the boundary conditions determine the actual strain
distribution in the compressed tissue. The strain distribu-
tion is estimated from the pre- and post-compression echo
signals. These signals are segmented at different depths
by partially overlapping windows, and the waveforms in
each window are cross-correlated to estimate the time-
delays. Next, two time delay estimates from the overlap-
ping windows are used to estimate the axial strain field.
The amount of overlap between the windows and the win-
dow length are the two parameters that are related to the
resolution in elastograms. If the overlap factor is fixed as
a fraction of the window length, the window length can
be defined as an effective resolution parameter. The es-
timation performance of the strain estimator in response
to a strain step also results in a linear transition zone be-
tween the two strain levels that corresponds to the window
length, thereby relating the window length to the axial res-
olution parameter [3]. Small windows with fixed overlap
produce high resolution but noisy elastograms.

The range of actual strains that can be imaged varies
greatly with the elastographic imaging system, while the
statistical properties of the strain estimate depends on
many parameters, including the actual strain and the res-
olution. To evaluate the performance of these systems, an
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objective criterion is required to assess the accuracy and
precision of the strain estimates. One such criterion that
quantitatively measures the accuracy and precision of the
strain estimates is the elastographic signal-to-noise ratio
(SNRe) [4] defined by:

SNRe =
ms

σs
. (1)

Here ms denotes the statistical mean strain estimate and
σs denotes the standard deviation for the strain noise esti-
mated from the elastogram. The variation of the SNRe
with tissue strain gives the strain transfer function of
the elastographic system. When the statistical mean value
of the strain is replaced by the ideal tissue strain, and
the minimum standard deviation by the theoretical lower
bound on the standard deviation, we obtain an upper
bound on the performance of the strain estimator, referred
to as the strain filter [4]. The strain filter therefore repre-
sents a theoretical upper bound on the transfer function of
an elastographic imaging system that defines the mapping
from the entire range of strains present in the compressed
tissue via the first order statistical properties of the elas-
togram. The upper bound may be derated to account for
other noise sources such as digitization noise, tissue atten-
uation [5], and lateral and elevational decorrelation [6].

The strain filter depends on the correlation coefficient
between the windowed signal waveforms [4]. An expression
derived previously for the strain filter [4] was for large win-
dows to evaluate low-resolution elastograms. In this paper,
we derive the correlation coefficient and strain filter for fi-
nite window lengths. The result is called the multiresolu-
tion strain filter. This new formalism effectively combines
the ultrasound system parameters [center frequency, band-
width, and sonographic signal-to-noise ratio (SNRS)] with
the particulars of the signal processing algorithms (namely,
the window length and the overlap factor). The range of
strains in the elastogram and their respective elastographic
SNRe, therefore, can be measured at different resolutions.

The strain filter shows that the measurement process
allows only a selected range of strains to be displayed on
the elastogram, and consequently has bandpass character-
istics in the strain domain. The width and the height of
the strain filter specifies the dynamic range (DRe) and
SNRe of the elastographic imaging system as defined in
the Appendix. The strain filter has previously been used
to analyze the tradeoffs in the strain estimation perfor-
mance for different ultrasound system parameters; namely,
the bandwidth and center frequency [4], algorithms like
multicompression [7], [8], temporal stretching [8], and ex-
tension of the dynamic range in the elastogram [9]. The
dynamic range extension algorithm uses variable applied
compression along with a careful selection of the strains
in the corresponding elastograms with the highest SNRe
to generate the composite elastogram [9]. The strain filter
formalism was also used recently to evaluate the tradeoffs
in the use of RF and envelope signals for strain estimation
[10]. The nonstationary variation of the strain filter with
frequency dependent attenuation [5] and lateral and eleva-

tional signal decorrelation [6] also have been analyzed.
In this paper, we investigate the effects of parameters

regarding the ultrasonic system and the signal processing
algorithm on the dynamic range and the sensitivity of the
multiresolution strain filter. Elastographic images gener-
ated from experimental data and numerical simulations
for a variety of resolution conditions are compared with
the predictions of the multiresolution strain filter.

The paper is organized as follows. Additional descrip-
tion of the strain filter formalism is presented in Section II.
In Section III, an expression for the correlation coefficient
that depends on the window length is derived. Section IV
describes the theory for the computation of the axial strain
variance and the development of the multiresolution strain
filter. Simulation results in Section V verify the presence
of a window length where the strain estimation variance
is minimized, as predicted by the theoretical analysis. Ex-
perimental results in Section VI illustrate the application
of multiresolution elastography to improve the elastogram
parameters. The bias errors observed by Céspedes [3] also
are reduced with multiresolution elastography. Section VII
discusses and summarizes the paper.

II. Background

Axial strain (ŝ) is estimated from ultrasonic echo signals
segmented by two adjacent windows [1]:

ŝ =
d̂2 − d̂1

∆z
, (2)

where d̂1 is the displacement estimate from the window
centered at location z, ∆z is the window separation de-
termining the overlap factor, and d̂2 is the displacement
estimate from the window at location z + ∆z.1 Because
the strain estimate is obtained from a linear combination
of two random variables, d̂1 and d̂2, the variance of the
strain estimator depends on the variances of these vari-
ables. Assuming that the echo signals are stationary, the
variance of the strain estimate (σ2

ŝ) can be expressed in
terms of the variance of the displacement (time-delay) es-
timates (σ2

d̂
) [11]:

σ2
ŝ ≥

2σ2
d̂

Z∆z
(3)

where Z denotes the window length. From the inequality
in (3), it appears that the strain estimation variance can
be reduced monotonically by increasing the window length
Z or window separation ∆z.

The variation in the upper bound of the elastographic
SNRe with tissue strain is defined as the strain filter, and
is given by:

SNRUB
e =

st
σ(ŝ)ZZLB,ρ

, (4)

1Note that time delay estimates and displacement estimates are
often used interchangeably by assuming that the speed of sound in
the tissue is constant.
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where st is the tissue strain, and σ(ŝ)ZZLB,ρ
2 is the mod-

ified Ziv-Zakai lower bound (ZZLB) [12] on the standard
deviation of the strain estimator. The ZZLB provides the
tightest lower bound for the displacement estimator. The
modified ZZLB expression for the strain estimation vari-
ance [4] is given by:

σ2(ŝ)ZZLB,ρ ≥

(sZ)2

6Z∆z , (2BZ/c)SNRC < γ

Threshold γ < (2BZ/c)SNRC < δ

σ2(ŝ)BB,ρ = 2σ2(d̂)BB,ρ
Z∆z δ < (2BZ/c)SNRC < ϑ

Threshold ϑ < (2BZ/c)SNRC < η

σ2(ŝ)CRLB,ρ = 2σ2(d̂)CRLB,ρ
Z∆z η < (2BZ/c)SNRC

(5)

where Z is the length of the temporal window, SNRC de-
notes the composite signal-to-noise ratio in the RF sig-
nal (defined in Appendix A), σ2(·)CRLB,ρ represents the
Cramér-Rao lower bound (CRLB) on the variance, for
partially correlated signals with nonzero strain [13], and
σ2(·)BB,ρ represents the corresponding Barankin bound.
The Barankin bound exceeds CRLB by a factor of
12(f0/B)2 [12]. For zero strain σ2(d̂)CRLB,ρ converges to
the classical CRLB where σ2(d̂)CRLB ∝ Z−1 for large win-
dows [12]–[15]. The quantity (2BZ/c)SNRC is referred to
as the postintegration SNR. Equation (5) shows the three
distinct operating regions for σ2(ŝ)ZZLB,ρ depending on
the value of in [12], and in the Appendix B.

For partially correlated signals within the window,
Walker and Trahey [13] derived a minimum variance for
the displacement estimator that depends on the correla-
tion coefficient. The assumption that the waveforms have
a rectangular spectrum led to the following closed-form
expression:

σ2(ŝ)CRLB,ρ ∼=
3c

4π2Z(B3 + 12Bf2
0 )

[
1
ρ2

(
1 +

1
SNR2

S

)2

− 1

]
(6)

where the term SNRS represents the signal-to-noise ra-
tio due to the signal independent noise in echo signals.
The parameter ρ denotes the correlation coefficient and
accounts for the effects of partial correlation of the wave-
forms within the window. For zero strain ρ = 1, (6) reduces
to the classical expressions for the CRLB [12]–[15]. For
non-zero strain ρ < 1, (6) increases the bound to a more
achievable level σ2(d̂)CRLB,ρ > σ2(d̂)CRLB. Furthermore,
we will show in Section IV that the strain estimation vari-
ance is minimum for a characteristic window length (Z)
for each strain, and beyond which σ2(ŝ)CRLB,ρ increases
rapidly with Z. The minimum variance for the strain es-
timator is obtained by substituting (6) into (5). Previous
work [17] suggests that a 50% window overlap provides

2The lower bounds on the strain estimation variance are denoted
with an additional subscript ρ to illustrate that these variance are
computed for partially correlated signals. These lower bounds con-
verge to the classical bounds when ρ = 1.

the best strain estimates. With ∆z = Z/2, the window
length Z is the only parameter left defining the resolution
in elastograms. The smallest Z that can be selected in pro-
cessing the echo waveforms would be the duration of the
impulse response (determined by the bandwidth and the
center frequency) of the ultrasound system. The best reso-
lution in elastograms is, therefore, limited by the duration
of the system impulse response.

An expression for ρ was previously derived by Walker
and Trahey [16] for point scatterers illuminated by an
ultrasonic transducer with rectangular spectrum. In the
next section, we derive the correlation coefficient ρ for
correlated scatterers illuminated by broadband transduc-
ers that also include the effects of tissue strain and finite
duration windows.

III. Formulation of the Correlation Coefficient

The following expression for the correlation coefficient is
based on the treatment of Bilgen and Insana [18]. However,
the expression of the correlation coefficient presented in
this paper includes the contributions arising from the use
of a finite cross-correlation window. First the ultrasonic
RF echo signals are modeled by:

r1(z) = h(z) ∗ e(z) + n1(z),
r2(z) = h(z) ∗ e(az) + n2(z)

(7)

where the subscripts 1 and 2, respectively, specify the pre-
and post-compression echo-signals obtained from an elastic
tissue medium, e(z) is the scattering function of the tissue,
h(z) is the pulse-echo point-spread function (PSF) of the
imaging system, and n1(z) and n2(z) are the uncorrelated,
zero mean random noise. The symbol ∗ denotes the convo-
lution operation. The parameter a compressing the tissue
scattering function is the strain factor defined in terms of
either the actual tissue strain s, a = 1/(1− s) ∼ 1 + s for
s � 1 or the residual strain δs, a ∼ 1 + δs if the post-
compression echo signal is stretched back temporally by
the average strain. In either case, a is not constant and
changes continuously with position in the tissue. However,
(7) treats the strain as locally constant within each window
because any continuous profile can be approximated by a
piece-wise variation. For varying strain within the window,
only an average estimate of the strain is obtained. Here-
after we use the word strain to mean either s or δs and the
word post-compression to mean either the signal received
from tissue after the compression or the signal stretched
back by the average strain.

The impulse response function h(z) is represented by a
Gaussian modulated sinusoid as:

h(z) =
1√

2πLh
exp(−z2/2L2

h) sin(k0z), (8)

where k0 is the spatial center frequency, andLh is the dura-
tion of the ultrasound pulse. The tissue scattering function
is realized from a filtered white noise process [19], [20]. The
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autocorrelation of the scattering function is represented by
a Gaussian centered at a spatial frequency kf :

e(z) =
1√

2πLf
exp(−z2/2L2

f ) cos(kfz), (9)

where Lf represents a correlation length representing the
longitudinal variation in tissue. The amplitude spectrum
of the filter function is given by:

E(k) =
1
2

(exp(−(k + kf )2L2
f/2) + exp(−(k − kf )2L2

f/2)).
(10)

With the echo signal model presented in (7) and the
above assumptions, we first derive the cross-correlation
function between the pre- and post-compression waveforms

〈Γ̂12(z′)〉 =

〈
1
Z

Z/2∫
−Z/2

r1(z − z′)r2(z) dz

〉
(11)

and the correlation functions Γ̂11(z) for the pre- and
Γ̂22(z′) the post-compression waveforms. The square
bracket 〈·〉 denotes the ensemble average, and z′ denotes
the shift variable. The effective correlation coefficient can
be written as:

ρ =
Γ̂12(0)√

Γ̂11(0)Γ̂22(0)
= ρ0 ×M. (12)

The term ρ0 represents the peak correlation coefficient
[18], and can be expressed as:

ρ0 =
(L2

f + L2
h)1/4(L2

f + a2L2
h)1/4

η
× exp

(
ζ2

η2

− 1
2

(
(ωfL2

f + ω0L
2
h)2

L2
f + L2

h

+
(ωfL2

f + aω0L
2
h)2

L2
f + a2L2

h

))
(13)

where

η2 = L2
f +

1 + a2

2
L2
h

ζ = ωfL
2
f +

1 + a

2
ω0L

2
h.

The factor M in (12) is due to the finiteness of the
window length and is given by the integral:

M =
1
Z

Z/2∫
−Z/2

exp
(
−((1− a)z)2

4η2

)
cos
(
ζ((1− a)z)

η2

)
dz.
(14)

Evaluating the integral yields:

M =

√
πη exp

(
− ζ

2

η2

)
(1− a)Z

{
erf
[

(1− a)Z + i4ζ
4η

]
− erf

[
−(1− a)Z + i4ζ

4η

]}
(15)

Fig. 2. Comparison of the strain filters obtained using the effective
correlation coefficient as opposed to the peak correlation coefficient.
The strain filters were obtained using the following parameters:Lh =
Lf = 0.1 mm, k0 = kf = 20.4 mm−1.

where erf(·) is the error function defined as:

erf(x) =
2√
π

x∫
0

exp(−z2) dz. (16)

For zero strain s = 0, a = 1 and one can show that
M = 1 in the limit. Nonzero strains on the other hand
yield M < 1 and consequently reduces the correlation co-
efficient ρ. A comparison of the strain filters with the addi-
tional reduction in the correlation coefficient (since M < 1
for nonzero strain and finite window lengths) and previ-
ously published strain filters [4], for a 1 mm resolution is
illustrated in Fig. 2. Tissue strain in decibels is plotted
along the x-axes, where 0 dB corresponds to a 100% tissue
strain. Note the reduction in the maximum value of the
SNRe and dynamic range due to the contributions of the
factor M on the strain filter. The difference between the
strain filter due to the effect of the additional decorrelation
will be more pronounced with an increase in the window
length.

IV. Theoretical Results

In this section, we use the correlation coefficient ρ in
(12) and compute σ2(ŝ)CRLB,ρ in (6) to determine the
lower bound on the strain variance σ2(ŝ)ZZLB,ρ in (5).
Next we calculate the multiresolution strain filter from
(4). We use the following parameter values for the cal-
culations unless stated otherwise: Lh = Lf = 0.1 mm
k0 = kf = 20.4 mm−1 (denoting an ultrasound pulse with
a 5 MHz center frequency) and ∆z = Z/2 (i.e., 50% win-
dow overlap between data segments).

The variation of correlation coefficient ρ in (12) with
the window length Z is illustrated in Fig. 3, for five differ-
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Fig. 3. Variation of the effective correlation coefficient for different
strain values plotted as a function of the window length. Observe that
the correlation coefficient decays rapidly with an increase in tissue
strain. The effective correlation coefficients were obtained using the
following parameters: Lh = Lf = 0.1 mm, k0 = kf = 20.4 mm−1.

ent strain values: s = 0%, 0.5%, 1%, 2%, and 5%. For zero
strain s = 0, ρ = 1 and for nonzero strain s > 0, ρ ≤ 1. The
trend that ρ decreases with Z and the decay is faster for
larger strains clearly indicates the decorrelation effects of
the actual strain on the pre- and post-compression wave-
forms.

The variance of the strain estimate σ2(ŝ)ZZLB,ρ is plot-
ted as a function of the window length Z in Fig. 4 for
the same strain values (s = 0%, 0.5%, 1%, 2%, and 5%)
used in Fig. 3. For s = 0, σ2(ŝ)ZZLB,ρ decreases with Z
and the result converges to the asymptote proportional
to Z−3 (since the variance is bounded by the CRLB in
this region) because σ2(d̂)CLRB,ρ ∝ Z−1 at large Z. For
s 6= 0, however, the variance is larger and does not decay
as fast with Z. The strain induced effects on the variance
are observed as a rapid rise after a characteristic window
length depending on the strain. The variance of the strain
estimate is minimum at a characteristic time-bandwidth
product that depends on the strain. Because the band-
width is maintained constant, the strain estimation vari-
ance is minimum at this particular window length, which
is referred to as the optimal window length in this paper.

The dependence of the elastographic SNRe on the win-
dow length Z is depicted in Fig. 5 for strains: s = 0.5%,
1%, 2%, and 5%. Note that SNRe, which is inversely pro-
portional to σ(ŝ)ZZLB,ρ according to (4), is calculated by
setting the mean strain equal to the actual strain, i.e.,
ms = s, because the displacement estimator based on the
cross-correlation peak is unbiased [15]. The curves exhibit
distinct peaks for each strain with the corresponding opti-
mal window lengths maximizing the elastographic SNRe.
Large strains shift the peak in the SNRe curve to smaller
window lengths while reducing the peak value of the SNRe.
Analysis of the results from Fig. 5 resulted in the following

Fig. 4. Standard deviation of tissue strain estimates plotted as a func-
tion of the window length. Observe that, for the case of zero strain,
where the variance reduces with an increase in the window length as
predicted by CRLB theory. For all other values of the strain, we ob-
tain an optimal window length where the standard deviation is mini-
mum. The length of the optimum window reduces with an increase in
tissue strain. The strain estimation variances were obtained using the
following parameters: Lh = Lf = 0.1 mm, k0 = kf = 20.4 mm−1.

empirical formula for the optimal window length:

Topt ∼=
3B

2sf2
0

(17)

where B is the bandwidth and f0 is the center frequency
of the ultrasonic pulse. Fig. 6 presents plots of (17) for
two different transducer center frequencies along with the
corresponding theoretical results. Observe from Fig. 6 that
this empirical relationship characterizes the variation in
the optimal window length with strain.

The multiresolution strain filter characterizes the sensi-
tivity and dynamic range of the elastograms from the sig-
nal and the noise properties of the elastograms. The strain
filters for four different window lengths, Z = 0.5, 1, 3, and
5 mm are illustrated in Fig. 7. The results clearly show the
tradeoff between the improvement in both elastographic
sensitivity and dynamic range with Z versus the reduc-
tion in elastographic resolution. Small windows perform
better for the elastographic imaging of regions with large
strains at the expense of increased strain noise. The sharp
decline observed at very high strains are due to the uncer-
tainties in determining the location of correlation peak as
discussed previously in [4].

Fig. 8 presents a three-dimensional plot of the strain fil-
ter with resolution, tissue strain, and elastographic SNRe
plotted along the three axes. Note that the sensitivity re-
duces with an improvement in the resolution as seen by the
movement of the strain filter toward higher tissue strains.
The strain filter also becomes shorter, with a sharp decline
in the SNRe observed at very high resolutions as illustrated
in Fig. 8. Plotting the strain filters in this manner allows
the visualization of the entire range of tissue strains ob-
servable in the elastogram at different resolutions.
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Fig. 5. Elastographic SNRe plotted as a function of the window
length, using the CRLB on the variance of the strain estimator.
Note that the SNRe is maximum for strain values at the optimal
window length obtained from Fig. 1. The SNRe estimates were
obtained using the following parameters: Lh = Lf = 0.1 mm,
k0 = kf = 20.4 mm−1.

In the next two sections, we test the performance of
the multiresolution strain filter with numerical simulations
and experimental measurements.

V. Simulation Results

In this section, we use one-dimensional Monte-Carlo
simulations in MATLAB to corroborate the theoretical re-
sults presented in the previous section.

A. Method

The A-scan RF echo signals were simulated using a
Gaussian PSF with 7.5 MHz center frequency and 50%
bandwidth (Lh = 0.06 mm) and sampled at 48 MHz.
The speed of sound in tissue was assumed to be con-
stant at 1540 m/s. The scattering function consists of uni-
formly distributed high density point scatterers (40 scat-
terers/resolution cell) satisfying the requirement of fully
developed speckle. The PSF is convolved with the scatter-
ing function to obtain the pre-compression A-scans.

The displacement of the point scatterers in a uniform
medium due to the static compression was derived by
Céspedes [3]. The applied stress is assumed to propagate
uniformly so that the displacement of each scatterer can
be written as a function of the applied strain and the po-
sition of the surrounding scatterers. Considering an equiv-
alent one-dimensional spring system [3], the displacement
(di) of the ith scatterer due to an applied displacement of
∆y is given by:

di =
∆yli
L

, (18)

Fig. 6. The optimal window lengths plotted as a function of their
respective strain values with center frequencies of 5 MHz (x x x)
and 7.5 MHz (o o o) and a 60% bandwidth, respectively. The solid
line denotes the empirical plot obtained using (17) for the 5 MHz
and 7.5 MHz transducer, respectively. Note the close correspondance
between the empirical and theoretical results. The optimal window
length increases rapidly with a decrease in tissue strain.

where L is the length of the tissue medium, and li is the lo-
cation of the ith scatterer. The post-compression A-scan is
obtained by convolving the PSF with the compressed point
scatterers. A total of 25 independent scattering functions
and the corresponding pre- and post-compression signal
pairs are realized. The strain estimates are then computed
from these signal pairs using different window lengths. The
value of SNRe is calculated from the mean ms and the
standard deviation σs of the strain estimates.

The above process is repeated for two strains s = 1%
and 2%.

B. Results

The variation of SNRe with the window length is plot-
ted for the two strains s = 1% and 2% in Fig. 9. The
graphs with the error-bars and symbols denote the simu-
lation results: “x” for s = 1% and “o” for s = 2% and the
solid line represent the theoretical predictions of the mul-
tiresolution strain filter obtained for Lf = 0 in (13) and
(14). The graphs of both the theoretical and simulation
results illustrate similar features of increasing with Z and
reaching a maxima at a characteristic Z value and decay-
ing with further increase in Z. The theory overpredicts the
SNRe as expected because it describes the upper bound on
the performance of the strain estimator. In addition, the
simulation uses a Gaussian shaped PSF and the strain fil-
ter is obtained using a flat spectrum. The multiresolution
strain filter, therefore, can be used to guide the selection of
the optimal window length and consequently the optimal
resolution.
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Fig. 7. A group of four strain filters, showing the distinct regions
of strain estimation. These strain filters correspond to resolutions
of 0.5 mm, 1 mm, 2 mm, and 5 mm, respectively. The strain filters
were obtained using the following parameters: Lh = Lf = 0.1 mm,
k0 = kf = 20.4 mm−1. Note the improvement in the sensitivity with
a decrease in elastographic resolution.

Fig. 8. The multiresolution strain filter in elastography. Tissue strain
in dB is plotted along the x-axis, resolution along the y-axis, and
SNRe along the z-axis. Note the variation in the shape of the strain
filter, which shifts toward lower strains with a decrease in the resolu-
tion. The strain filters were obtained using the following parameters:
Lh = Lf = 0.1 mm, k0 = kf = 20.4 mm−1.

VI. Experimental Results

In this section, experimental results are presented to
support the use of the multiresolution strain filter as
a quantitative measure for evaluating the elastographic
imaging systems. The elastography system consists of a
Diasonics Spectra II scanner (Diasonics Inc., Santa Clara,
CA) with a 7.5 MHz linear array, a digitizer (LeCroy Corp.,
Spring Valley, NY) operating at 48 MHz, a motion control
system, and a compression device. A personal computer
controls the operation of the entire system.

A gelatin phantom that contains graphite flakes for
speckle scattering and an inclusion that is positioned at

Fig. 9. Simulation and theoretical results that illustrate the variation
in SNRe with window length. Note the similar location of the op-
timal window length in both the theoretical and simulation results.
Both the theoretical and simulation results were obtained using the
following parameters: Lh = 0.06 mm (50% bandwidth) Lf = 0,
k0 = 30.6 mm−1.

the center and three times stiffer than the background
is used during the measurement [21]. A large compres-
sor was used for uniform compression producing 1% ap-
plied strain, and ultrasonic RF A-lines are acquired before
and after the compression. The sonogram obtained from
the pre-compression A-lines is shown in Fig. 10(a); the
elastogram obtained using a single 3 mm window is illus-
trated in Fig. 10(b). Figs. 10(c–e) represent elastograms of
the phantom obtained using multiresolution elastography.
Note that the inclusion is barely visible in the sonogram
due to similar acoustic backscattering in both the inclu-
sion and background. However, the inclusion can be clearly
seen in the elastograms.

Multiresolution analysis is carried out by processing the
RF pre- and post-compression data with different window
lengths. The strains with the highest SNRe are selected
to generate the composite elastogram. The elastographic
SNRe at each pixel in the elastogram is computed from
the ratio of the measured strain value to its correspond-
ing standard deviation [obtained by substituting the value
of the correlation coefficient from the windowed pre- and
post-compression waveforms into (6)]. Elastograms and
the corresponding SNRe mappings are obtained at each
window length. The tissue strain at each pixel correspond-
ing to the highest value of SNRe within the range of win-
dow lengths is selected as the strain estimate in the com-
posite elastogram.3 The smallest window length was fixed
at 1 mm, and subsequent multiresolution processing was
performed with additional 0.5 mm increments on the win-

3The elastograms in this section are processed without temporal
stretching. For nonuniform targets, an adaptive stretching technique
[22] has to be used to improve the elastogram parameters.
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Fig. 10. Sonogram (a) and elastograms (d–e), with a 1% total com-
pression, for a phantom with an inclusion that is three times stiffer
than the background. The sonogram was obtained using a 7.5 MHz
(k0 = 30.6 mm−1) linear array with a 50% bandwidth. The elas-
togram in (b) was obtained using a single 3 mm window, while (c)
represents the elastogram obtained using multiresolution elastogra-
phy with the largest window length used = 3 mm. Compare the
multiresolution elastogram in (c) with the elastogram in (d) which
was obtained using z = 1.7 mm. The composite elastograms shown
in (e) and (f) were obtained using multiresolution elastography with
the largest window length used = 2 mm and 4 mm, respectively.

dow length. The composite elastograms are presented in
Figs. 10(c, e, f).

A comparison of the elastograms obtained using mul-
tiresolution processing as opposed to the traditional
method of using a single window length is illustrated in
Figs. 10(b–d). Quantitative values of the elastographic
SNRe (computed in a small uniform region near the top
left corner of the elastogram) and the average resolution
(ZAVG) in the elastogram are also presented in Figs. 10(b–
f). ZAVG is estimated by computing a weighted sum of
the window length times the percentage of the strain esti-
mates computed using that window. Note that, although

Fig. 11. Comparison of the elastogram parameters obtained using
multiresolution (x x x) and single resolution (o o o) elastography.
The elastographic SNRe and the average resolution were computed
for the elastograms generated in Fig. 10.

the SNRe values for both these elastograms are in the same
range, a significant improvement in the average resolution
is observed in the multiresolution elastogram. For a real-
istic comparison of the SNRe improvement, the multireso-
lution elastogram in Fig. 10(c) should be compared to the
single resolution elastogram obtained using Z = 1.7 mm
[Fig. 10(d)]. The selection of the strains with the high-
est SNRe in multiresolution elastography significantly re-
duces the bias artifacts [3] that can be observed clearly in
Fig. 10(d). These bias artifacts increase with a decrease in
the window length used to obtain the elastogram. The elas-
tographic SNRe, however, is not significantly affected by
the bias artifacts because the first order statistics used to
compute the SNRe are virtually unchanged. The evolution
of the elastographic SNRe with the average resolution pa-
rameter is illustrated in Fig. 11, for both multiresolution
(denoted by ‘x’) and single resolution elastography (de-
noted by ‘o’). Observe from Fig. 11, that comparing the
two techniques at the same average resolution (2.5 mm)
produces a significant improvement in the SNRe (denoted
in Fig. 11 as the increase from A to B). In addition, a
comparison of the elastograms at the same elastographic
SNRe, indicates the improvement in the average resolution
parameter (denoted by the improvement in the average
resolution form A to C).

The enhancement of the elastogram image parameters
can be described in terms of the strain filter formulation as
illustrated in Fig. 12. In addition to improvements in the
SNRe and ZAVG, we also obtain an increase in the dynamic
range using multiresolution elastography. Comparing the
strain filters for the above result, we obtain DRe = BD for
the elastogram using the single window when compared
to DRe = BE with multiresolution processing for a 3 mm
resolution. The elastogram in Fig. 10(e) was obtained at
a 2 mm resolution (using three elastograms or 3 mul-
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Fig. 12. The corresponding multiresolution strain filters for the elas-
tograms shown in Fig. 10. The strain filters were obtained using the
following parameters: Lh = Lf = 0.06 mm, k0 = kf = 30.6 mm−1.

tiresolution steps to generate the composite elastogram),
and Fig. 10(f) represents the case with a 4 mm resolu-
tion (using seven elastograms). Note the improvement in
the composite elastograms obtained with an increase in
multiresolution processing as observed in Figs. 10(c, e, f).
Observe from the corresponding strain filters in Fig. 12
that DRe = CE for Fig. 10(e) (using three elastograms),
DRe = BE for Fig. 10(c) (using five elastograms) and
DRe = AE for Fig. 10(f) (using seven elastograms).

Multiresolution elastography, as illustrated in Figs. 10(c,
e, f) improves both the elastographic SNRe and dynamic
range by proper selection of the strain estimates from the
individual elastograms. The elastograms improve with an
increase in the multiresolution steps as indicated in Fig. 10.
However, the improvement in the elastogram parameters
does not increase linearly with the number of multireso-
lution steps as observed in the improvements in the elas-
togram from Figs. 10(e) to (c) (increase in the dynamic
range by BC = 6 dB, and maximum SNRe value by 3),
when compared to Figs. 10(c) and (f) (increase in the dy-
namic range by AB = 4 dB, and maximum SNRe value by
2) for the same computation time. In addition, the average
resolution in the multiresolution elastogram also reduces
with an increase in the multiresolution steps.

VII. Discussion and Conclusions

Multiresolution elastography is presented in this paper
as a method of maximizing the overall SNRe in the elas-
togram, in addition to increasing the dynamic range of
strains estimated and enhancing the average resolution.
The importance of the strain filter formulation is its abil-
ity to adaptively guide the strain estimation process. Al-
though the strain filter is theoretically formulated for the
cross-correlation based strain estimation algorithm, this
concept is valid for any elastographic technique that uses

an unbiased displacement estimator, because the formula-
tion is based on well known bounds.

The theoretical formulation of the strain filter now in-
cludes the limitations imposed by the use of the finite
cross-correlation window to estimate tissue strain. The
window length parameter contributes to the strain filter
formulation in two ways: first, through the expression for
the CRLB (modified for partially correlated signals), and
second, through the dependence of the effective correlation
coefficient on the window length (14). The strain estima-
tion variance used in the strain filter model is now a func-
tion of both the tissue strain and the window length. The
acoustic signal model used to derive the correlation coef-
ficient is one-dimensional and, therefore, does not include
the effects of additional derating due to lateral and ele-
vational decorrelation. However, the multiresolution strain
filter with this simple model still provides valuable insights
into the elastogram parameters obtainable at different res-
olutions.

The presence of an optimal window length where the
increased information in the RF signal is surpassed by the
signal decorrelation due to tissue strain and the movement
of tissue scatterers within the finite window is illustrated
in this paper. The theoretical analysis for the presence
of the optimal window length (using the CRLB on the
variance of the strain estimator modified for partially cor-
related signals) is corroborated by the simulation results.
The composite elastograms obtained using multiresolution
elastography [Figs. 10(c, e, f)], illustrate the improvement
in the elastogram parameters obtained using a single set of
RF pre- and post-compression data. Multiresolution elas-
tography provides minimum variance strain estimates. The
corresponding multiresolution strain filter allows a clear
visualization of the range of strains observable in the elas-
togram.

The multiresolution strain filters illustrated in this pa-
per are obtained at a fixed depth in tissue (at the focus
or in the far field of the ultrasonic beam) and under the
assumption that lateral and elevational decorrelation ef-
fects can be ignored. However, the characteristics of the
strain filter also depend on lateral and elevational position
and the depth in tissue [5], [6]. A family of strain filters
can be obtained at different depths or at different lateral
and elevational positions, thereby incorporating another
dimension to the strain filter concept [5], [6].
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Appendix

A. Definitions

Composite signal-to-noise ratio: The composite signal-
to-noise ratio (SNRC) is a combination of the sonographic
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noise level (SNRS) and a noise component due to signal
decorrelation, and is given by [12]:

1
SNRC

=
1

SNRS
+

1
SNRρ

(A-1)

where SNRρ = ρ/1− ρ converts the correlation coefficient
to an SNR measure. The above relationship enables the
use of SNRC in CRLB expressions in the literature that
involve signal decorrelation. This allows incorporation of
signal processing algorithms and decorrelation effects due
to lateral motion, attenuation, etc. into the strain filter.
Note that SNRC will always be bounded by the smallest
value of either SNRS or SNRρ.

Strain dynamic range: The range of strains that can
be depicted in an elastogram at high SNRe determines the
dynamic range of the strain filter, which is defined as:

DRe|SNRe,ref = 20 log10

[
smax

smin

]
(A-2)

where smax is the maximum strain and smin is the mini-
mum strain at a specified SNRe,ref level in the strain fil-
ter. In this paper we have chosen the specified SNRe = 4
(Fig. 12).

Strain sensitivity: Strain sensitivity is defined as the
smallest value of the strain in the elastogram depicted at a
specified value of the SNRe. The quantity smin also defines
the sensitivity of the strain filter.

Sensitivity = smin|SNRe,ref (A-3)

Equivalent square bandwidth of a Gaussian spectrum:
A reasonable approximation using a rectangular spec-

trum centered at the Gaussian center frequency with the
same mean square amplitude value as the Gaussian spec-
trum is obtained. The equivalent noise spectral bandwidth
[23, p. 141] is defined by:

B =

∞∫
0
|P (k)|2 dk

|P (k)|2max
=

1
4π

∞∫
−∞
|P (k)|2 dk

|P (k)|2max
=

1
2
√
πLh (A-4)

where B is the bandwidth of a rectangular spectrum with
the same total power and peak amplitude as the Gaussian
pulse spectrum P (k).

B. Threshold Values for the ZZLB

The threshold values used in (5) are defined as follows:

η =
6
π2

(
f0

B

)2 [
ϕ−1

(
B2

24f2
0

)]2

ϑ =
2.76
π2

(
f0

B

)2

δ = ζ/2
γ ≈ 0.46

(B-1)

where f0 = 1/λ0 is the center frequency, B is the equiv-
alent rectangular spectral bandwidth, ϕ−1(y) is the in-
verse of ϕ(y) = 1√

2π

∫∞
y
e−µ

2/2dµ, and (ζ/2)ϕ(
√
ζ/2) =

(12/BcsZ)2, which has two solutions. The larger value
of ζ is used to compute the threshold. When η <
(2BZ/c)SNRC , the ZZLB coincides with the CRLB, which
is the ambiguity-free region. If δ < (2BZ/c)SNRc < ϑ, the
ZZLB coincides with the Barankin bound, where phase
ambiguities increase the displacement variance. Finally
when (2BZ/c)SNRc < γ, the lower bound is character-
ized by the constant variance level of (sZ)2/6Z∆z, which
corresponds to the variance of a random variable uniformly
distributed between [−sZ/2, sZ/2].
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