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Mean Scatterer Spacing Estimation Using 
Multi-Taper Coherence

nicholas rubert and Tomy Varghese

Abstract—It has been hypothesized that estimates of mean 
scatterer spacing are useful indicators for pathological changes 
to the liver. A commonly employed estimator of the mean scat-
terer spacing is the location of the maximum of the collapsed 
average of coherence of the ultrasound radio-frequency signal. 
To date, in ultrasound, estimators for this quantity have been 
calculated with a single taper. Using frequency-domain Monte 
Carlo simulations, we demonstrate that multi-taper estimates 
of coherence are superior to single-taper estimates for predict-
ing mean scatterer spacing. Scattering distributions were mod-
eled with Gamma-distributed scatterers for fractional standard 
deviations in scatterer spacings of 5, 10, and 15% at a mean 
scatterer spacing of 1 mm. Additionally, we demonstrate that 
we can distinguish between ablated liver tissue and unablated 
liver tissue based on signal coherence. We find that, on the av-
erage, signal coherence is elevated in the liver relative to signal 
coherence of received echoes from thermally ablated tissue. 
Additionally, our analysis indicates that a tissue classifier uti-
lizing the multi-taper estimate of coherence has the potential 
to distinguish between ablated and unablated tissue types bet-
ter than a single-taper estimate of coherence. For a gate length 
of 5 mm, we achieved an error rate of only 8.7% when sorting 
23 ablated and 23 unablated regions of interest (ROIs) into 
classes based on multi-taper calculations of coherence.

I. Introduction

as an acoustic wave propagates through a medium, 
energy is absorbed and reradiated by spatial fluctua-

tions in compressibility and density in a process referred to 
as acoustic scattering [1]. The fundamental assumption in 
quantitative ultrasound (qUs) is that information about 
acoustic scattering may be gleaned from the received and 
beamformed rF echo signals, and qUs parameters may 
thereby be related to pathological changes in tissue. In 
many applications, the spatial variations are approximat-
ed by a stationary process [2]–[8]. However, in the liver 
it has been shown that a nonstationary two-component 
scattering model may be more appropriate [9]–[11]. This 
two-component model contains pseudo-periodically ar-
ranged scatterers and diffuse scatterers with a uniform 
spacing distribution [9]–[11]. The periodically arranged 
scatterers are hypothesized to correspond to the portal 
triads, which have a spacing of approximately 1 mm on 
the average, and encircle the periphery of the liver lobule 

[9]. The mean scatterer spacing (Mss) of these periodi-
cally arranged scatterers has been proposed as an useful 
biomarker to evaluate pathological changes in the liver, 
such as cirrhosis [9], [10], [12], or infiltration of primary or 
secondary liver tumors [13].

one of the earliest attempts to characterize liver tis-
sue in terms of Mss was by Fellingham and sommer [9]. 
For a regular array of scatterers with a separation of d, 
Fellingham and sommer demonstrated that peaks in the 
power spectrum would occur at frequency intervals, Δf 
= c/2d, where c is the sound speed of the medium [9]. 
They performed peak detection using the autocorrelation 
of the power spectrum and made Mss measurements in 
healthy and cirrhotic livers of human subjects [9]. With a 
5-MHz broadband transducer, they found an Mss of 1.07 
± 0.16 mm across 14 healthy livers and an Mss of 1.48 ± 
0.24 mm across 15 cirrhotic livers [9]. The cepstrum has 
also been used for making Mss measurements because 
it transforms the multiplicative relationship between the 
system response and tissue response to an additive rela-
tionship [11], [14]. Kuc et al. showed that the maximum 
value of the cepstrum was related to the most probable 
spacing of a unimodal scatterer spacing distribution [14].

The generalized spectrum (Gs), referred to as the 
spectral autocorrelation initially, was introduced by Var-
ghese and donohue to measure Mss [15], [16] and as a 
qUs biomarker. In [15], using computer simulations, they 
compared Mss measurements from the Gs with Mss 
measurements from the cepstrum. In their simulations, 
two types of point-like scatterers were randomly incor-
porated: uniformly distributed scatterers, referred to as 
diffuse scatterers, and Gamma-distributed scatterers, re-
ferred to as quasi-periodic scatterers. The Gamma dis-
tribution is frequently used to model the arrangement of 
randomly but regularly spaced scatterers, and this distri-
bution’s first use for modeling scatterer spacing can be 
attributed to landini and Verrazini [10]. In Varghese and 
donohue’s simulations, the randomly placed scatterers 
were convolved with a point spread function representing 
tissue attenuation and an ultrasound imaging system. It 
was shown that peaks in the Gs predict Mss more reli-
ably than peaks in the cepstrum as the concentration of 
diffuse scatterers increases or the regularity of the coher-
ent scatterers decreases. additionally, the Gs offers the 
theoretical advantage that, when considering expectations 
computed over many realizations of the scattering process, 
the energy from diffuse scattering and the energy from pe-
riodic scattering appear in different regions of the Gs [15]. 
concerning separation of tissue properties from the imag-
ing device, normalization has been proposed to remove 
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the effects of the imaging device from the measurement 
of the Gs [15].

In addition to frequency-domain techniques, Mss may 
be measured through time-domain measurements of the 
autocovariance function. Using singular spectrum analysis 
(ssa), Pereira et al. have decomposed the autocovariance 
of the rF echo envelope into a component resulting from 
diffuse scattering and a component resulting from periodic 
scattering [17], [18]. In ssa, the covariance matrix of the 
signal is diagonalized. Pairs of eigenvalues whose eigen-
vectors have a normalized correlation coefficient above a 
threshold, and whose eigenvectors have frequency content 
with sufficiently close peaks are identified. These eigen-
vectors are deemed to be due to a periodic component in 
the signal. The periodic component of the signal can then 
be found by projecting the signal onto the periodic basis 
vectors.

rather than model the signal as nonstationary in its 
second moment, some authors have tried to model the 
ultrasound signal as a wide-sense stationary (Wss) sig-
nal and attribute coherent scattering to its higher order 
moments [19]–[22]. In [19]–[21], the authors use the Wold 
decomposition theorem to write the rF echo signal as a 
sum of a coherent and a diffuse component. In [19]–[21], 
the diffuse component of the signal is modeled as a zero-
mean autoregressive process driven by a zero-mean white 
noise sequence. In [19], the coherent component is mod-
eled as a periodic sequence; the authors use this model 
to measure an Mss of approximately 1 mm in the livers 
of three healthy subjects using a clinical transducer with 
a center frequency of 3.5 MHz. Meanwhile, an Mss of 
1.5 mm was measured in liver tumors of 3 other volun-
teers using the same computational model and ultrasound 
system. In [22], abeyratne et al. also measured an Mss 
of approximately 1 mm in the livers of two subjects based 
on higher order statistics of the rF signal from a 3.5-MHz 
clinical array transducer.

In this work, we compare Mss estimates using single-
taper (sT) and multi-taper (MT) methods of estimation 
of the Gs. First, we describe the Gs theoretically. We then 
perform frequency domain simulations with scatterers 
modeled by monopole scatterers with a known diameter 
distribution. Finally, we demonstrate results for a tissue 
classification problem in the liver ex vivo.

II. Generalized spectrum

A. The Generalized Spectrum

We model the ultrasound signal as a random time se-
ries with correlated frequency components. This type of 
signal falls under the general class of signals referred to 
as harmonizable processes [23]. Harmonizable processes 
include stationary time series, periodically correlated time 
series, and other types of time series [23]. a harmonizable 
process, X(t), has a cramèr representation given by [24]
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−∫ 2
1 2

1 2
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In (1), the sampling frequency is assumed to be 1, making 
the nyquist frequency equal to 1/2. The equation states 
that X(t) is the inverse Fourier transform of an increment 
process, dZ( f ). The cramèr spectral representation was 
originally developed for stationary processes, where the 
increments are orthogonal. The cramèr representation 
was later extended to include nonstationary but harmo-
nizable processes by loève [25]. For stationary processes, 
the autocovariance function may be related to the power 
spectrum through the Wiener–Khintchine theorem [26]. 
For a zero-mean, harmonizable process the autocovariance 
function may be related to the loève spectrum by

 
ΓL

L d

( , ) [ ( ) ( )]

exp( ( )) ( , )

*t t E X t X t

i t f t f f f

1 2 1 2

1 1 2 2 1 22

=

= −
−∞

∞

∫ π γ ff f1 2d .
 (2)

In the field of qUs, the loève spectrum has been re-
ferred to as the spectral autocorrelation [15], [27] or the 
Gs [28]–[30]. The Gs may also be defined in terms of the 
increment process [24] as

 ΓL( , ) [ ( ) ( )].*f f f f E Z f Z f1 2 1 2 1 2d d d d=  (3)

as demonstrated by Haykin in [31], it is easier to interpret 
the frequency and time variables if the coordinate system 
is rotated by 45°. We define an average time t0, a time lag 
τ, an average frequency f, and a frequency difference g by
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By doing so, the autocovariance and Gs may be rewrit-
ten in terms of the rotated time and frequency variables, 
yielding
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−∞

∞

∫∫ t d d  (5)

With this equation, the rotated Gs, γ, is the Fourier trans-
form of the rotated autocovariance function, Γ; the time 
lag and average frequency may be considered conjugate 
variables; and the average time and frequency difference 
may be considered conjugate variables. along the line g = 
0, the Gs is identical to the power spectrum. any energy 
outside the line g = 0 is an indication that a time series 
is not stationary.

To date in ultrasound, the most commonly employed 
estimator for the Gs is a synchronized, time-averaged es-
timate [15], [28], [30], [32]:
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The Yi in (6) refer to windowed dFTs of rF a-lines. For 
Welch–Bartlett averaging, each of these a-lines are broken 
up into Ns overlapping segments, where typically Ns = 3 
[15]. The φi( f ) are phase factors that account for the fact 
that arbitrarily dividing a segment into different sections 
produces phase offsets between those segments. The phase 
factor for a segment is given by φ( f ) = exp (j2πfτi), where 
τi is the time delay between the beginning of the a-scan 
segment and the position of the dominant periodic scat-
terer [30]. This is typically approximated as the location 
of the maximum value of the envelope of the rF data. 
The averages across overlapped a-line segments are then 
averaged over Na a-lines. This type of estimate for the 
Gs effectively decreases the resolution in the nonstation-
ary direction to decrease the variance of the Gs estimate.

In addition to a Welch–Bartlett average for the Gs, 
a diagonally smoothed estimate has been proposed by 
Varghese and donohue [27]. The diagonal smoothing ac-
knowledges that for a signal with periodically correlated 
frequency components we expect the Gs to be continuous 
along lines corresponding to a constant scatterer spacing 
and discontinuous along lines perpendicular to this. a di-
agonally smoothed Gs estimate is given by
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where R is the radius of nonzero elements of the smooth-
ing kernel, H, and i indexes individual a-lines. diagonal 
smoothing is implemented by allowing H( f1, f2) = δ( f1 
− f2).

The Gs depends on the spatial arrangement of the 
scatterers, overlying tissue attenuation, diffraction, and 
the transducer bandwidth [28], [30]. It has been shown 
that measuring coherence, as opposed to the Gs, approxi-
mately deconvolves the effects of overlying tissue attenu-
ation, diffraction, and transducer bandwidth [28]. coher-
ence is calculated by dividing an estimated Gs for a given 
segment or a-line by its magnitude before averaging:
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where γs could be a diagonally smoothed estimate or a 
time-averaged estimate. In prior works, this has been re-
ferred to as a system-normalized Gs. In addition to coher-

ence, the collapsed average (ca) is frequently calculated. 
The ca is an average along diagonal lines in the station-
ary direction. It is given by
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where M is a normalization constant that is equal to the 
number of discrete entries in a diagonal band correspond-
ing to a single frequency difference.

B. Multi-Taper (MT) Estimation

To discuss the MT method, we begin by substituting 
the cramèr representation for a discrete time process into 
the equation for a discrete Fourier transform. We note 
that (1)–(5) were valid for both discrete and continuous 
time. We use the index n to denote discrete time samples. 
Using this notation, and the convention that the sampling 
frequency is equal to one, a discrete Fourier transform is 
given by
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Inserting the cramèr representation for a stochastic pro-
cess into this equation yields
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This equation is often referred to as the fundamental equa-
tion for spectral estimation [33]. It describes the blurring 
in the frequency domain that results from using a finite 
Fourier transform. The integral kernel Kn is similar to a 
sinc function and is known as the dirichlet kernel.

Estimating the statistical properties of Z( f ) could be 
considered an inverse problem. To solve it, Thomson ad-
vocated the use of a local least-squares eigenfunction ap-
proximation to the solution of the fundamental equation 
of spectrum estimation [33]. In the approximation, the 
meaning of local is defined by a user-selected bandwidth 
parameter, W. The majority of the energy of the eigen-
functions is concentrated in a band from −W to W. an 
eigenfunction approximation is possible because the eigen-
functions of the dirichlet kernel are well known. They are 
the discrete prolate spheroidal sequences (dPss). We will 
denote the kth dPss by vk(t) and the Fourier transforms 
of the dPss as Vk( f ); the eigenvalue of the kth dPss will 
be denoted λk.

To solve the integral equation, Z is projected onto the 
dPss over the bandwidth −W to W, yielding Zk, where 
the Zk are the unobservable, ideal eigencoefficients for the 
expansion. They are given by
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where Zk are unobtainable with the data. However, Thom-
son showed the following in his seminal paper on MT es-
timation [33]:
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These equations demonstrate two things. First, the eigen-
coefficients can be approximated by the dFT of the data 
segment windowed with one of the dPss. second, the 
difference between the ideal eigencoefficients and the es-
timated eigencoefficients is given by the integral outside 
the bandwidth (−W, W). This difference between the ideal 
and estimated eigencoefficients can introduce bias in the 
spectral estimate. We define the bias for the estimate of 
the kth eigencoefficient, bk( f ) as
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Thomson proposed an adaptive weighting procedure for 
reducing the bias due to energy outside the local interval 
(−W, W) [33]. This is based on the fact that the amount 
of leakage for a given taper increases with the order of 
the taper. The data-adaptive method weights the higher 
order eigencoefficients less in regions where the spectrum 
is changing more rapidly. a derivation of the adaptive 
weighting scheme is also given by Percival and Walden 
[26]. These weights are derived assuming that x(t) is a 
realization of a stationary process, with a power spectrum 
S( f ) [33]. To find the adaptive weights, the mean-square 
error between the ideal eigencoefficients and the estimated 
eigencoefficients is minimized for each of the k eigencoef-
ficients. This yields
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where S( f ) is the true, but unknown value of the power 
spectrum.

To determine the data-adaptive weights, an iterative 
procedure is used. To begin the iteration, the true val-
ue of the spectrum is estimated to be the average of the 
spectrum calculated from the two lowest-order windowed 
Fourier transforms of the data. after each iteration, the 
spectrum is recalculated with the set of weights from the 
previous iteration. Generally, the procedure terminates 
after only a few iterations. Though this estimate for the 
data-adaptive weights was originally derived assuming a 

stationary time series, the weighted eigencoefficients have 
been successfully used for coherence estimation for non-
stationary time series [34]. For nonstationary time-series, 
the following estimator for the Gs has been used [24], [34]:
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where H(f1,  f2) is a smoothing function that considers the 
continuity properties of the Gs. as demonstrated by Var-
ghese et al. [27], for an rF signal from periodic scatterers, 
we expect the Gs to be smooth along the diagonal lines f1 
− f2 = c or along the horizontal line g = c in the rotated 
bifrequency plane. letting H f f( , )1 2′ ′  = δ(f1′ − f2′),  the esti-
mate is smoothed over the bandwidth (−W, W) on a di-
agonal line. This yields the following estimator for the Gs 
for the ith a-line in a 2-d roI [34]:
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To estimate the Gs of a block of ultrasound data contain-
ing Na a-lines, we multiplied each estimate by the appro-
priate phase factor φi( f ) and averaged them:

 ˆ ( , ) ˆ , ) ( ) ( ).(,γ γ φ φMT
A

MTf f N f f ffi
i

1 2 1 2 1 2
1

= ∑ ∗  (18)

In this paper, calculations of the eigencoefficients were 
performed with a Fortran code made available by Prieto 
et al. in [35]. all other computations were performed using 
numpy [36].

III. simulations

A. Pressure Field Calculation

simulations were performed by computing the pres-
sure field in the frequency domain as described by li and 
Zagzebski [37]. We summarize the salient features of the 
simulation in the following paragraphs. The pressure at 
field point r emitted from a single rectangular element of 
a linear array transducer, vibrating so that the velocity of 
the surface is v(t) = u(ω) exp (iωt), is given by
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where c is the speed of sound in the medium, ρ is the 
density of the medium, k is the wavenumber, and r′ is the 
field point on the surface of the transducer. The width of 
the element laterally is b, and elevationally is a. accurate 
approximation of this integral by truncating a Taylor se-
ries expansion for the term |r − r′| is discussed in [37]. 
attenuation was taken into account by letting the wave 
number be complex with an imaginary part equal to the 
attenuation. linear attenuation with frequency was used 
for these simulations, with an attenuation coefficient equal 
to 0.65 dB/cm·MHz.

For a focused linear-array transducer, the field from 
each element is summed and appropriate time-delays are 
applied to achieve a focused ultrasound beam. a 128-ele-
ment array with element sizes of 0.15 mm laterally and 
10 mm elevationally was simulated. approximation of the 
time delays is discussed in [37]. The simulated transducer 
had an f-number of 2. The simulations assume the Born 
approximation of no multiple scattering, and that locally 
the incident pressure wave looks planar. Under these as-
sumptions, the scattered pressure at a point r′′ from a 
single scatterer is given by

 p p
ik

s i( , ) ( , )
exp( )

( , ).r r
r r

r r′′ =
− ′′

− ′′
ω ω ω θΦ  (20)

The quantity Φ(ω, θ) denotes the scattering amplitude in 
the azimuthal direction. It describes the angular distribu-
tion of the scattered sound energy, and is discussed in 
Morse and Ingard [38].

The force on the face of the transducer caused by a 
single scatterer was given by integrating over the face of 
the transducer. We summed the contributions from all 
the scatterers, and assumed the scatterers were monopole 
scatterers. The scattering amplitude at all angles over 
the transducer face could then be approximated by the 
scattering amplitude at 180°. a uniform force-to-voltage 
transfer function for the transducer was assumed. The 
time-domain signal was generated by multiplying the 
scattered pressure in the frequency domain by a band-
pass filter corresponding to a transducer with a particular 
bandwidth, BW, and center frequency, fc; then performing 
the inverse Fourier transform:
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a center frequency of 3.5 MHz with a fractional band-
width of 70% was used in these simulations. The pressure 
field was calculated over a discrete grid with a spacing of 
Δx = 0.2 mm, Δy = 0.2 mm, Δz = 0.01 mm. We use the 
same convention as [37] for our coordinate system: x is the 
elevational direction, y is the lateral direction, and z is the 
axial direction. The pressure from scatterers located at ar-
bitrary locations was found by multiplying the pressure at 
the closest grid point by a phase factor, ϕ, that accounted 
for the difference in phase and attenuation:

 φ π( ) ( ( ) ).∆ ∆z i z k= exp 2 2  (22)

B. Scatterer Distribution

In Fig. 1(a) we show a schematic approximation of 
the liver tissue model containing multiple lobules. In the 
model, a lobule is made up of 7 periodic scatterers corre-
sponding to 6 hexagonally arranged portal triads and the 
central vein, along with a collection of diffuse scatterers. 
In simulation, each a-line was a signal generated by an 
independent realization of a medium containing randomly 
placed scatterers. The simulated medium had dimensions 
of 44 mm axially, 5 mm laterally, and 10 mm elevational-
ly. Two types of scatterers were created in each computa-
tional phantom: diffuse and periodic. They differed in the 
intensity of the reflected sound wave and their spatial ar-
rangement. diffuse scatterers were simulated by creating 
uniformly randomly distributed scatterers with a number 
density of 10/mm3. To ensure sufficient signal intensity, 
periodic scatterers were placed in the center of the beam 
laterally and elevationally and any reflected pressure from 
a periodic scatterer was amplified by a factor of 5. axially, 
we used an Mss of 1 mm, or (2.27 wavelengths relative 
to the center frequency), for each column of periodic scat-
terers. However, we allowed a random offset between the 
start of each series of periodic scatterers from one beam-
line to the next. This was captured in the simulations by 
drawing the position of the first periodic scatterer from 
a uniform distribution with a maximum value of 1 mm. 
subsequent periodic scatterers were arranged according 
to a Gamma distribution. a diagram of a computational 
phantom is shown in Fig. 1(b).

To calculate the scattering amplitude at 180°, we mod-
eled the diffuse scatterers as glass beads 45 μm in diam-
eter and the periodic scatterers as glass beads 85 μm in 
diameter. This was done because the scattering amplitude 
of glass beads is easily calculated based on Faran theory 
[39]. The medium was assumed to be tissue equivalent 
with a sound speed of 1540 m/s and a density of 1.02 g/

Fig. 1. (a) diagram showing idealized liver tissue insonified by two fo-
cused ultrasound beams. (b) simplified periodic and diffuse scattering 
model used in simulation of an a-line. large green circles represent regu-
larly spaced scatterers which had initial position determined by a uni-
form distribution (orange arrow) and subsequent spacing determined by 
a gamma distribution (black arrow). small red circles represent diffuse 
scatterers. 
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cm3. The glass beads were assumed to have a sound speed 
of 5570 m/s, a shear wave speed of 3375 m/s, and a den-
sity of 2.54 g/cm3.

The Gamma distribution is typically defined in terms 
of a shape parameter, k, and a scale parameter, θ. The 
distribution, f(x; k, θ) is given by

 f x k
x x

k

k

k( ; , )
exp( )
( )

.θ
θ

θ
=

−1 /
Γ

 (23)

The symbol Γ denotes the Gamma function in this con-
text. For our purposes, we discuss results in terms of the 
Mss, μ, the variance of the distribution, σ2, and the frac-
tional standard deviation of the scatter spacing, η = σ/μ. 
The mean and the variance are related to the shape and 
scale by μ = kθ and σ2 = kθ2.

IV. Materials and Methods

Five bovine livers were acquired from a slaughterhouse 
and 23 samples were taken. all procedures were performed 
within three days of acquiring the bovine liver. samples 
were created by cutting a liver into small pieces approxi-
mately 3.5 × 6 × 6 cm. a sample was then placed on the 
holder shown in Fig. 2(a) and immersed in physiological 
saline solution. Following this, the sample was placed in 
a vacuum chamber for 15 min. after degassing, the tissue 
was placed in a water bath maintained at a constant tem-
perature of 37°c for 30 min. an rF data set of the liver 
was then acquired.

The sample holder locked the specimen in place by the 
insertion of two metal rods through the sample vertically. 
The sample holder also provided fiducial markers to en-
sure the imaging of the same plane, within the elevational 
resolution of the transducer, by allowing the insertion of 
two staggered metal cylinders through its sides. Each tis-
sue sample was placed on top of a piece of rubber to avoid 
reverberations from the bottom of the container.

Following initial imaging of a sample, one rF ablated 
region was created in the imaging plane using an internal-
ly cooled coolTip antenna (Valleylab, Boulder, co) with 
a 1-cm active region powered by a Valleylab coolTip rF 

generator. For each ablation, the power was set to 12 W 
for 8 min in a manual mode. These settings produced ab-
lations that were roughly spherical and approximately 1 
to 1.5 cm in diameter. Following ablation, the rF applica-
tor was removed; tissue was again placed in physiologi-
cal saline solution and degassed in a vacuum chamber for 
15 min. Following the degassing the sample holder was 
placed in the same water bath maintained at 37°c for 
30 min. The samples remained in saline solution; a trans-
ducer was placed in a clamp and partially submersed in 
the saline solution while imaging was performed. The ex-
perimental setup used is shown in Fig. 2(b).

For the classification task, this yielded 46 rF data sets. 
Twenty-three data sets were of the liver before rF abla-
tion. The other 23 data sets were of identical imaging 
planes in the same sample of liver, but following rF ab-
lation. one pair of ablated and unablated data sets was 
acquired from each bovine liver sample. data sets were ac-
quired using a clinical linear array transducer, the 9l4, on 
the siemens s2000 scanner (siemens Medical solutions, 
Mountain View, ca), at a transmit frequency of 6 MHz.

Identical imaging settings were used for each pair of 
data sets collected. In all data sets, the TGc was uniform-
ly set to the minimum setting across the whole imaging 
depth. The focal depth was set such that the ablation was 
slightly deeper than the focus of the transducer. across all 
cases, this was a setting of 1 cm. The ablation was iden-
tified in B-mode imaging by locating the fiducial mark-
ers. The presence of the ablation in the imaging plane 
was then confirmed using acoustic radiation force imaging 
(arFI), available on the ultrasound system, and gross 
pathology images.

V. results and discussion

A. Simulation Results and Discussion

simulation results are presented for estimates of the 
Gs for a specified number of gated a-line segments, gate 
length, and fractional standard deviation in spacing in 
Figs. 3 and 4; Monte carlo simulations of Mss estimates 
for a variable number of a-lines or a variable gate length 
are shown in Figs. 5 and 6. In Figs. 3 and 4, the window 
that was used for the sT method was the Hann window; 
for Monte carlo simulation results in Figs. 5 and 6 we 
used several different windows, i.e., Hann, Hamming, and 
Blackman–Harris. all windows are given by the formulae 
in Table I. For all Monte carlo simulations, 150 ensembles 
of independent a-lines were used. To compute the Mss, 
the maximum of the ca of the coherence was computed. 
The ca was filtered, such that any values within 0.5 MHz 
of the diagonal corresponding to the power spectrum were 
set to zero. Mss was computed from the maximum value 
of the filtered ca. For all results shown, we fixed the 
smoothing bandwidth at 0.642 MHz, and gated the data 
starting at a depth of 25 mm.Fig. 2. (a) Tissue holder. (b) Tissue holder in water bath. 
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The simulation results shown in Figs. 3(a) and 3(b) 
demonstrate sT and MT calculations of the coherence for 
a large number of gated data segments in the ensemble 
(N = 200) for phantoms with η = 5%, using a short gate 
length of 6 mm. Figs. 3(a) and 3(b) illustrate the advan-
tage of the MT calculation in reducing spectral leakage. 
The location of the peaks in the MT calculation is precise, 
with a maximum occurring along a single diagonal line. 
There is some leakage visible in the MT calculation, but 
the peak is identified more precisely for the MT than the 
sT calculation. In the limiting case of many independent 
data segments in the ensemble, note that the peaks of the 
sT calculation are centered in the correct diagonal band 
of the coherence estimate. They are simply smeared across 
a broad region of the bifrequency plane because of spectral 
leakage.

The effect of increasing the gate length on the coher-
ence calculation under the particular conditions of our im-
age formation and scattering model is shown in Figs. 3(c) 
and 3(d). In this figure, a loss of the higher order peaks is 
visible in both MT and sT calculations. Peaks are visible 
across three diagonal lines corresponding to a 1 mm spac-
ing, two times this frequency difference, and three times 
this frequency difference with a short gate length. With a 
longer gate length the third peak is no longer discernible, 
and the first two peaks in the bifrequency plane have a 
reduced intensity. The reason for this is the periodic snr 
was variable over the depth of the simulated phantom. as 
the simulated ultrasound beam propagated a resolution 
cell became larger. as the resolution cell became larger, 
the ratio of diffuse signal energy to coherent signal energy 

increased. This is because the periodic scatterers were 
distributed in one dimension, along a column, whereas 
the diffuse scatterers were distributed three-dimensionally 
and uniformly throughout the volume.

In Fig. 4, a phenomenon that was observed for larger 
fractional standard deviations in the spacing is demon-
strated. This figure shows coherence calculations for a 
small and a large number of gated data segments when η 
is high (20%). at a high fractional standard deviation in 
the scatterer spacing, the sub-harmonic spacing peak in 
the coherence calculation starts to dominate over the peak 
corresponding to a spacing of 1 mm. This seems counter-
intuitive, but it has also been observed by Huang et al. in 
[29]. We can see, though, that the effect is less severe for 
the MT calculation than it is for the sT calculations.

The Monte carlo results shown in Figs. 5 and 6 provide 
statistical confirmation of what we infer from the calcula-
tions in Figs. 3 and 4. For the parameters explored, the 
MT calculation outperforms any of the sT calculations 
in variance and bias simultaneously. For the Gs calcu-
lated for a low fractional standard deviation in the spac-
ing of 5%, the peak of the ca for the MT calculation 
corresponds precisely to 1.0 mm, whereas there is some 
variance and bias in the sT calculation when the number 
of gated data segments averaged is smaller than 8. as 
η increases to 10%, there is some variance and a small 
amount of bias in the MT calculation, but this rapidly 
falls off as more than 10 gated data segments are used in 
the calculation. at an η equal to 15%, a large amount of 
bias is visible in the Mss estimate for a small number of 
gated a-lines, but considerably less for the MT than for 
any of the sT calculations. The bias toward smaller scat-
terer spacings that is visible when η = 15% is a result of 

Fig. 3. (a and c) single-taper (sT) and (b and d) multi-taper (MT) es-
timates of the coherence averaged over 200 data segments when η = 5% 
and the gate length is either (a and b) 6 mm or (c and d) 13 mm. 

Fig. 4. (a and c) single-taper (sT) and (b and d) multi-taper (MT) 
estimates of the coherence with a gate length of 6 mm, η = 20%, and 
averaged over (a and b) 10 or (c and d) 200 data segments. 
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the prominence of the sub-harmonic spacing peak. of the 
3 sT estimators, the Hann and the Hamming windows 
seem to perform the best, with the Blackman–Harris win-
dow exhibiting slightly poorer performance.

B. Ex Vivo Results

In this section, we display the results of measurement of 
the Gs in the liver. We hypothesize that thermal ablation 
results in destruction of the portal triads, and therefore 
a decrease in the periodic component of the ultrasound 
signal. We also hypothesize that an MT estimator has the 
potential to detect coherent scattering more consistently 
than an sT estimator of coherence. To demonstrate this, 
we constructed a tissue classifier and performed an roc 
analysis with some limitations. We utilized a small num-
ber of tissue samples from four independent livers because 
of time constraints on making the measurements. The 
correlation between the coherence measurements made 
within the same liver was unknown. Because the correla-
tion between coherence measurements of different samples 
from the same liver was unknown, techniques for assess-
ing statistical significance were not used. Therefore, the 
results of the roc analysis do not constitute a rigorous 
statistical test.

For the analysis, we selected one roI from each of the 
23 rF data sets before rF ablation and one roI from 
each of the 23 roIs following rF ablation to perform the 

roc analysis with. Figs. 7(a), 7(b), 8(a), and 8(b) dem-
onstrate the selection of roIs. The fiducial markers are 
clearly visible across the B-mode image as bright streaks. 
These markers were located before and following ablation 
within a sample. The ablation presented on the B-mode 
image as a slightly hyper-echogenic region showing a large 
amount of shadowing. In Fig. 7(b) the shadowing is so 
extreme as to obscure the tip of the fiducial marker follow-
ing ablation. We note that attenuation is elevated to the 
point of obscuring the reflections that result from the huge 
impedance mismatch between the distal metal rod and 
the surrounding tissue. In addition to acoustic shadowing, 
we also confirmed the presence of the ablated region us-
ing arFI and gross pathology, as delineation of the exact 
extent of the thermal ablation was difficult to determine 
from B-mode image alone.

analysis was performed for roIs with two sizes: 5 mm 
axially by 5 mm laterally, and 7 mm axially by 5 mm lat-
erally. The longer gate length was chosen as 7 mm because 
this was approaching the largest roI that could be cen-
tered in an ablation having a diameter of 1 cm. creating 
larger ablations to use a larger roI at this center frequen-
cy was not feasible, because the signal would have been 
too attenuated to image the full extent of a larger ablation 
with a sufficient snr. We make this claim based on the 
shadowing present at the bottom edge of the ablation and 
deeper, as shown in Figs. 7(b) and 9(b). The smaller roI 
was chosen to be as small as possible while still containing 

Fig. 5. (a–c) Mean scatterer spacing (Mss) estimates and (d–f) coefficient of variation for a variable number of gated data segments in the estimate 
and a fixed gate length (6 mm). (a and d) η = 5%, (b and e) η = 10%, (c and f) η = 15%. 
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enough periodic scatterer pairs to generate a convergent 
Gs calculation. Each roI was selected such that for a pair 
of images obtained before and after ablation, the tissue 
region being analyzed was identical within the elevational 
width of an imaging plane, and within the tissue volume 
changes caused by the ablation process. The 5-mm-long 
roIs were manually selected, and the 7-mm-long roIs 
were obtained by extending the 5-mm roIs by 1 mm on 
either side.

For each roI, the center frequency of the received 
echoes was estimated by locating the maximum value of 
the Gs along the diagonal corresponding to the power 
spectrum. at a 5 mm gate length, the mean estimated 
center frequency across all roIs before ablation was 
4.88 ± 0.34 MHz, and following ablation it was 4.66 ± 
0.22 MHz. at a 7 mm gate length, the mean estimated 
center frequency across all roIs before ablation was 4.73 
± 0.23 MHz and 4.61 ± 0.21 MHz following ablation. The 
Gs was calculated for each roI over a 2.0 MHz bandwidth 

about the center frequency. This analysis bandwidth was 
chosen by experimentally determining over what band-
width the power spectrum had a magnitude over −6 dB.

coherence was computed within each of the roIs be-
fore and after ablation. The mean and standard deviation 
of coherence over all the ablated and unablated roIs were 
computed in each frequency bin. The mean and standard 
deviation were computed in each frequency bin relative 
to the frequency difference with the estimated center fre-
quency. The mean coherence before ablation was given by

 γ γpre
c c

c c( , ) ( , ) ,, ,∆ ∆ ∆ ∆f f N f f f fi i i
i

N

1 2 1 2
1

1
= − −

=
∑  (24)

where fc,i is the estimated center frequency of the ith roI, 
N = 23 was the number of roIs, Δf ranged from −1.0 MHz 
to 1.0 MHz, and γ i

c is an estimate of coherence in the ith 
roI. The mean following ablation was computed similar-

Fig. 6. (a–c) Mean scatterer spacing (Mss) estimates and (d–f) coefficient of variation for a variable gate length in the estimate and a fixed number 
of gated data segments (N = 10). (a and d) η = 5%, (b and e) η = 10%, (c and f) η = 15%. 

TaBlE I. analytical Formulae For Windows Used in Generalized spectrum calculations. 

Window Formula

Hann W(n) = 0.5(1 − cos(2πn/(N − 1)))
Hamming W(n) = 0.54 − 0.46cos(2πn/(N − 1))
Blackman–Harris W(n) = a0 − a1cos(2πn/(N − 1)) + a2cos(4πn/(N − 1)) − a3cos(6πn/(N − 1)); 

a0 = 0.3635819; a1 = 0.4891775 
a2 = 0.1365995; a3 = 0.0106411
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ly; we denote it γpost
c . The standard deviation was com-

puted according to
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a tissue template was then constructed using Fisher’s lin-
ear discriminant:

 T =
−
+

γ γ
σ σ
pre
c

post
c

pre post
. (26)

a score was then assigned to the speckle in each roI 
by summing the coherence multiplied point-wise by the 
template. symbolically, for the ith tissue sample we calcu-
lated the score Si according to

 S f f T f fi i
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Fig. 7. B-mode image of liver sample reconstructed from rF data (a) 
before ablation and (b) following ablation. red box shows the region of 
interest (roI) used in calculations. (c) clinical B-mode and acoustic 
radiation force imaging (arFI) images of thermal ablation. (d) optical 
(gross pathology) image of sample following thermal ablation. 

Fig. 8. coherence in the region of interest (roI) in Fig. 7 calculated 
using the multi-taper (MT) method (a) before and (b) following abla-
tion. coherence obtained by the single-taper (sT) method using a Hann 
window (c) before and (d) following ablation. 

Fig. 9. B-mode image of liver sample reconstructed from rF data (a) 
before ablation and (b) following ablation. red box shows the region of 
interest (roI) used in calculations. (c) clinical B-mode and acoustic 
radiation force imaging (arFI) images of thermal ablation. (d) optical 
image of sample following thermal ablation. 
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We first discuss the claim that the received signal from 
ablated liver tends to exhibit a decreased coherent com-
ponent relative to a signal from unablated liver. In Figs. 8 
and 10, we show examples of coherence calculations corre-
sponding to the roIs shown in Figs. 7 and 9. Fig. 8 dem-
onstrates a calculation with a 5-mm roI, whereas Fig. 
10 demonstrates a calculation with a 7-mm roI. In both 
figures, we show the coherence before ablation and follow-
ing ablation. across both roIs shown, note that regard-
less of the calculation method, the coherence decreases 
throughout the bifrequency plane from its value before ab-
lation. The tissue templates confirm this result across the 
roIs investigated, as shown in Fig. 11. across both gate 
lengths, all the calculated templates showed large positive 
values throughout the bifrequency plane, indicating that 
the unablated liver tissue tended to exhibit periodic scat-
tering with a range of Mss values.

In Tables II and III, we display the minimum classifica-
tion error achieved by a tissue classifier constructed from 
each tissue template. classifiers were generated by varying 
a threshold on the score computed from (27), and label-
ing tissue as positive for liver and negative for ablation. 
a true positive in this case was liver before ablation ex-
hibiting a large amount of coherence. a false positive was 
thermally ablated liver tissue whose received echoes pos-
sessed a large amount of coherence. The analysis indicates 
that the MT method has the potential to outperform sT 
calculations in applications in tissue, with a minimum er-
ror rate of only 8.7% for the 5 mm gate length and a mini-
mum error rate of 10.9% for the 7 mm gate length. We 
note that increasing the gate length consistently improved 

the error rate for all sT calculation methods, whereas the 
MT calculation maintained roughly the same error rate at 
a long gate length. This is probably because at a longer 
gate length leakage is less pronounced, so increasing the 
gate length lessens the impact of the leakage improvement 
from multi-tapering, while increasing the chance that the 
scattering distribution is no longer the same throughout 
the gate length.

VI. conclusion

We have shown that an MT estimate of coherence yields 
significant improvements over sT estimates of coherence 
with simulations and has the potential to yield improve-
ments in calculations in tissue. Furthermore, we have 
shown that at a transmit center frequency of 6 MHz, scat-
tering in the liver has a stronger coherent component than 
scattering from ablated tissue. Future work will evaluate 
whether or not this is true at other transmit center fre-
quencies in the diagnostic range. coherence at frequency 
differences corresponding to a well-chosen range of Mss 
may be a useful indicator for delineating thermal ablation. 

Fig. 10. coherence within the region of interest (roI) in Fig. 9 calcu-
lated by the multi-taper (MT) method (a) before and (b) following abla-
tion. coherence obtained by the single-taper (sT) method using a Hann 
window (c) before and (d) following ablation. 

Fig. 11. Templates created by (a) the multi-taper (MT) method (b) 
Hann window at a gate length of 5 mm. Templates created by (c) MT 
method (d) Hann window at a gate length of 7 mm. 

TaBlE II. Minimum classification Error for Tissue 
classifiers at a 5 mm Gate length. 

Method FP Fn
Total  

errors (%)

Hann 5 10 32.6
Hamming 4 8 26.1
Blackman–Harris 1 15 34.7
Multi-taper (MT) 2 2 8.7
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Future work will also evaluate use of an improved estimate 
of Mss as a tissue classifier for diagnosing diffuse liver 
disease such as cirrhosis or fatty infiltration.
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