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Abstract—In elastography, window size has been typ-
ically used synonymously with resolution. Strain is esti-
mated by computing the gradient of the displacement es-
timates, which have a direct dependence on the window
size. However, the resolution is also dependent on the sep-
aration between these windows. The intricate relationship
between the window size, window shift, and resolution has
not previously been explored. In this article, we perform a
controlled simulation experiment to evaluate the relation-
ship among elastographic axial resolution, window size, and
window shift. We conclude that the axial resolution can be
expressed as a bilinear function of window size and window
shift, the latter having a much larger weight.

I. Introduction

Resolution is one of the primary image parameters in any
imaging modality. In many imaging modalities, the reso-

lution depends only on the size of the data window. However,
in an elastographic system, axial resolution is determined by
a complex interaction between the data window size and the
overlap between successive windows. In elastography [1], strain
is generally estimated from the gradient of displacement esti-
mates. The displacements between the pre- and postcompres-
sion echo signals are estimated at various depths by shifting
the data windows. This displacement is a monotonically non-
decreasing function of depth; as a result, it is rarely constant
within a data window. When displacement varies, correlation
function maxima generally correspond to the mean of the dis-
placements within the data window [2]. We can change resolu-
tion by changing either the sampling or the averaging. Increas-
ing the window size (T ) increases averaging, reducing the effect
of motion of an individual scatterer. Changing the window shift
(∆t), on the other hand, alters the sampling. A higher sampling
assists in the detection of sharp changes. Thus, changes in T
affect the statistics, and changes in ∆t affect the sampling of
the displacement estimates. As a result, a change in either T or
∆t affects the axial resolution. In this work, we postulate that
the resolution can be expressed as a function of the window
size and window shift [R = R(T,∆t)].
In the past, we have used the window size (at a fixed per-

centage of window overlaps) synonymously with the resolution
[3]. Cespedés [4] investigated elastographic resolution using the
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axial and lateral step response approaches without actually at-
tempting to define resolution. The step response demonstrated
a strong dependence on the window size. However, the effect
of window shift on resolution was not investigated. Cohn et
al. [5] have also evaluated the step response for a high con-
trast object and then deconvolved it with a step function to
get a “system strain impulse response.” The accuracy of this
approach may vary with target contrast because strain and
modulus are nonlinearly related [6], [7] and because this ap-
proach uses linear systems analysis. “System strain impulse re-
sponse” can be computed alternatively by computing the first
derivative of step response. They also proposed using the au-
tocorrelation function (ACF) of the difference between the dis-
placement and a third-order fit to the displacement. However,
no justification was given as to why this parameter may be
an indicator of elastographic resolution. No attempt has been
made in either approach to relate resolution to any system or
processing parameter. We have proposed a modulation transfer
function (MTF) approach [8] to resolution in an earlier work
[9] in which resolution was defined in terms of the ability of
the strain estimators to follow the cyclic strains as the rate of
change of strain increases. When the estimated strain lags be-
hind the true strain by a predetermined amount, the limit of
resolution is reached according to this definition.
It is very difficult to obtain a theoretical expression for the

resolution R in terms of T and ∆t. In this paper, we report
on the axial resolution using a simulation experiment. We have
simulated a 1-D wedge-shaped phantom. We concentrate on low
contrast resolution (a contrast of two is used) because resolu-
tion generally improves at high contrast [4]. Elastographic reso-
lution may also depend on many system parameters such as the
center frequency and bandwidth. Our experimental set-up typ-
ically uses a 5-MHz ultrasonic transducer with 60% fractional
bandwidth. In this study, the system parameters are kept con-
stant at these values to keep the dimensionality of the problem
small.
It must be stressed that none of the resolution criteria dis-

cussed above measures the absolute limit of resolution. These
criteria are only approximate treatments and are useful for
comparing one system with another. A complete treatment
needs to also include an analysis of the noise characteristics,
which are the ultimate resolution limiting factors [10]. Because
window size affects elastographic noise, a resolution study in
which noise analysis is included may show a stronger depen-
dence on the window size than we observed in this work. Ad-
ditional studies could be performed to include an analysis of
the noise characteristics and, separately, to evaluate the effect
of systems parameters, etc.

II. Methods

A. The Wedge Phantom

We have simulated a phantom using MATLAB1 containing
a stiffer wedge-shaped inclusion in an otherwise homogeneous

1MATLAB is a registered trademark of The MathWorks, Inc. (Nat-
ick, MA).
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Fig. 1. Wedge phantom used in the experiment.

medium. A hard inclusion was chosen because cancerous lesions
are frequently stiffer than the host tissue [11]. An experimental
wedge phantom has previously been used in elastography; how-
ever, it was not used quantitatively to evaluate resolution [1].
The shape of the phantom used in this study is similar to the
SUAR2 wedge phantom used to determine ultrasonic resolu-
tion using a similar principle [12]. The elastographic phantom
used in this study is shown as a grayscale image in Fig. 1.
The background is softer (strain = 1%), and the wedge-shaped
inclusion at the middle is stiffer (strain = 0.5%). For strain
estimation, we used the gradient method in conjunction with
global stretching [13]. To keep the total displacement constant
at every A-line, half wedges (strain = 0.5%) at the top and
bottom of the phantom are included.
We used 77 lines of uniformly spaced, Gaussian-distributed

random amplitude scatterers within a thin pencil beam (10
scatterers per wavelength). A total of 25 independent renditions
of the wedge phantom was simulated. The Gaussian round-trip
transfer function had a center frequency of 5 MHz and a noise
equivalent bandwidth [14] of 60%. The signals were sampled
at 50 MHz. The RF A-lines were computed by convolving the
scatterer profile with the impulse response of the system. Tis-
sue compression was simulated by appropriately time-shifting
the scatterers, which was implemented using a frequency do-
main phase-shift algorithm. Nonaxial motion was excluded to
isolate axial resolution from other effects. No attenuation was
simulated.

B. Estimating the Resolution

The ability to replicate the discontinuity (notch) in strain
with a predefined fidelity is used as the resolution criterion;
the ability to create a notch that is at least halfway down be-
tween the top and bottom of the well was chosen. Resolution
is estimated as follows: 1) compute the estimated strain pro-
files corresponding to each A-line; 2) define resolution as the
smallest of the widths of the wedge for which the estimated
strain profile drops below the midpoint (0.75%) of the high

2The axial resolution wedge consisted of a water-filled wedge. Both
“barely resolved” and “clearly resolved” criteria were used to deter-
mine the axial ultrasonic resolution.

Fig. 2. Illustration of the resolution estimation.

(1%) and low (0.5%) strains; 3) repeat steps 1 and 2 for 24
other independent renditions of the wedge; and 4) compute the
mean and standard deviations of the computed resolutions for
the 25 renditions. These four steps are repeated for a range of
values of T and ∆t. In computing the strain profile in step 1,
the gradient method with global uniform stretching is used [9],
[13], [15]. Step 2 is illustrated for a wedge with a finite step
size of 0.13 mm in Fig. 2. We show the estimated strain pro-
files for widths of 0.81, 0.94, and 1.06 mm. The strain profile
corresponding to the 0.81-mm width is above the midpoint of
0.75%, but the other two are below this threshold. (0.94 mm
is the smaller of the two.) Thus, according to our definition,
the estimated resolution is 0.94 mm. Note that the resolution
estimates will have a finite precision because of the discrete in-
crement of wedge step size. In actual experiments, the precision
of the resolution estimate (wedge step size) of 0.03 mm was sat-
isfactory because the resolution is generally in the millimeter
range.
Finally, we fit the resolution measurements to a plane surface

with the form

R = a0 + a1T + a2∆t (1)

where R is the resolution, T is the correlation window size,
and ∆t is the window shift. We chose this form because of its
simplicity. We will compute the coefficient of determination r2

to assess the goodness-of-fit. If the fit is poor (r2 < 0.9), some
higher order terms and some cross terms of T and ∆t may
need to be included. We derived the formula to be used for the
least-square fit to the form in (1) following the formulation (for
least-squares fit to a straight line) by Bevington and Robinson
[16]. The expression used is shown in the Appendix.

III. Results

We have generated resolution values using window sizes
ranging from 1

2 to 4 mm, and window shifts in the range of
1
64 to 2 mm. However, window shifts larger than the window
sizes have not been used because then there will be unused
data segments between the correlation windows. We further il-
lustrate resolution estimation in Fig. 3 through 6. In Fig. 3, we
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Fig. 3. Another illustration of the resolution estimation. Window
size = 3 mm and window shift = 0.125 mm. The estimated resolution
is 0.58 mm.

Fig. 4. Window size = 3 mm and window shift = 0.50 mm. The
estimated resolution is 0.80 mm.

show the elastogram for a window size of 3 mm and window
shift of 0.125 mm. The estimated resolution is 0.58 mm. The
vertical arrows approximately show the A-line where the reso-
lution criterion was satisfied and the estimated resolution itself.
Fig. 4 and 5 show elastograms for a window size of 3 mm, and
window shifts of 0.5 and 0.75 mm, respectively. As the window
shift increases, the resolution criterion is satisfied at a thicker
portion of the wedge. The estimated resolutions are 0.80 and
1.06 mm, respectively. A systematic error is observed in the
elastograms, especially at smaller window sizes. These errors
may be from the correlated noise in displacement estimates.
We plot estimated resolutions in Fig. 6 through 9. We plot

resolution versus window size and window shift as a 2-D mesh
in Fig. 6. Clearly, the window shift has a much more signifi-

Fig. 5. Window size = 3 mm and window shift = 0.75 mm. The
estimated resolution is 1.06 mm.

Fig. 6. Surface plot of the estimated resolution versus window size
and window shift.

cant effect on the resolution compared with window size. To
illustrate their comparative effects, we also plot subsets of the
data versus window shift in Fig. 7 and versus window size in
Fig. 8. In Fig. 7, resolution changes almost at the same rate
as window shift, and the graphs for window sizes of 1.5 and
2.0 mm are very close. On the other hand, in Fig. 8, resolution
changes much slower with the changes in window size, and the
graphs are quite far apart for window shifts of 0.25 and 0.5 mm.
However, the trend is significant in both cases in comparison
with the error bars.
We have used (A.2) to fit these data to a plane surface.

For the fit, we have discarded the data for ∆t < 0.0625 mm
because the resolution values remain virtually unchanged below
this value and, thus, is not a part of the (T,∆t) plane surface.
The equation of the fit is as follows:

R = −0.0498 + 0.1586T + 0.8982∆t (2)

with r2 = 0.988. Such a large value of r2 signifies that the fit is
excellent, and the bilinear equation is sufficient to describe the
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Fig. 7. Effect of window shift on resolution.

Fig. 8. Effect of window size on resolution.

resolution. The intercept has a negative value. However, (2) is
not valid for arbitrarily small values of T and ∆t as is evident
from the flat portion of the plot in Fig. 6 at small values of T
and ∆t. In Fig. 9, we display the surface plot of the fit for the
range of data used in the fit (0.5 ≤ T ≤ 4, 0.0625 ≤ ∆t ≤ 2,
∆t ≤ T ; all units in millimeters).

IV. Discussion

We have defined elastographic resolution in this paper using
a controlled simulation experiment with a 1-D wedge phantom.
After computing the resolution for a set of window sizes and
window shifts using the defined criteria, we fit a plane surface
(bilinear equation of T and ∆t) through the data. We got an
excellent fit (r2 = 0.988). Thus, the bilinear fit is adequate, and
no higher order or cross terms are necessary.
The coefficients to ∆t and T are both positive as expected.

(Resolution is expected to improve when either T or ∆t is re-

Fig. 9. Surface plot of the bilinear fit to the estimated resolution
versus window size and window shift.

Fig. 10. Mean strain profiles corresponding to several A-lines. Win-
dow size = 0.5 mm. Window shift = 0.125 mm.

duced.) Interestingly, the coefficient a2 (to ∆t) is very close to
unity, and the coefficient a1 (to T ) is very close to zero. Thus,
R = −0.0498 + 0.1586T + 0.8982∆t ≈ ∆t. However, the ef-
fect of the window size, although much smaller than that of
the window shift, cannot be completely neglected (a1 �= 0). On
the other hand, the most significant effect of increasing win-
dow size is in the reduction of the noise in the elastograms. We
have plotted the mean strain profiles (at a few A-lines only) for
window sizes of 0.5 and 3 mm (window shift = 0.125 mm) in
Fig. 10 and 11, respectively. Clearly, the noise is significantly
lower at the larger window size (Fig. 11).
This study is valid for a single center frequency (5 MHz) and

bandwidth (60%) typical for our experimental set-up. Many
variables affect axial resolution including contrast, signal-to-
noise ratio (SNR), center frequency, bandwidth, beam size,
depth, nonaxial motion, etc. However, had we attempted to
include all phenomena, confounding effects would have com-
plicated the problem and made it nearly intractable. So, we
decided to separate the variables. This work can be considered
the “best case” scenario. Additional studies can be performed
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Fig. 11. Window size = 3 mm. Window shift = 0.125 mm. Compared
with Fig. 11, the noise has been significantly reduced.

to evaluate the effect of changes in the system parameters. We
have, in fact, shown a trade-off among center frequency, band-
width, SNR, and resolution in a strain filter [17] formulation,
and a 3-D strain filter (SNRe versus strain and resolution) was
drawn [3]. Here, window size was used as resolution. It is possi-
ble to redraw the 3-D strain filter using (2) as resolution instead
of the window size.
The ultrasonic resolution for the simulated ultrasound sys-

tem was on the order of 0.5 mm. The elastographic resolution
that we have computed depends on the window size and the
window shift and was computed to be as low as 0.125 mm and
as high as >2 mm. For the window sizes and window shifts that
are typically used in elastography, the elastographic resolution
was found to be of the order of the sonographic resolution.
The resolution of any convolution-based imaging system

such as ultrasonic imaging is ultimately diffraction-limited.
Elastographic resolution improves when T and ∆t are reduced.
But, there is a limit to improving the elastographic resolution
by making T and ∆t arbitrarily small. Validity of (2) is known
only for the ranges of values used in the fit (0.5 ≤ T ≤ 4,
0.0625 ≤ ∆t ≤ 2, ∆t ≤ T ; all units in millimeters). Moreover,
if we examine Fig. 6 and 7 (especially, Fig. 6) closely, we notice
that, as ∆t is reduced, resolution asymptotically flattens out
as ∆t → 0. It is likely to be due to the fact that resolution is
ultimately limited by a complex interaction of T , ∆t, and the
impulse response of the system. A closer look at Fig. 6 reveals
that the onset of this effect is dependent on the values of T and
happens at larger values of ∆t when T is smaller. A more com-
plete study can be conducted to determine the dependence of
the resolution limit on the impulse response of the ultrasound
system.

Eq. (2) is strictly valid for the gradient strain estimator
in conjunction with global uniform stretching [13]. If global
stretching is not used for the gradient strain estimation, then
the elastograms will be noisier. However, the resolution es-
timates may not be very different, although some variation
is expected because of the increased noise itself. The results
will likely be different if some other estimator, such as a least
squares [18] or adaptive stretching [9], is used. In adaptive
stretching, window shift is expected to have a much smaller ef-
fect on resolution. The windowed postcompression A-line seg-
ment is stretched iteratively in adaptive stretching until the
correlation between this and the corresponding precompression
segment maximizes (the stretch factor itself is used to compute
strain); thus, only intrawindow operations are necessary. As a
result, when the data window is completely within the notch,
the expected value of estimated strain will not be affected by
other surrounding strains and equal the strain in the notch.
Gradient methods, on the other hand, compute strains from
the first difference of the displacement estimates. Thus, even
when a data window is completely inside the notch, the strain
estimate at that location will be influenced by the displacement
estimates at the neighboring data windows that may be outside
the notch.
The results will also be different if we chose a different cri-

terion for computing resolution. In this study, we did not in-
clude an ultrasonic beam. Inclusion of the beam (or changing
the beam size) is very likely to change (2) even if we do not
change the criterion. If a different type of target is used, or if
psychovisual experiments are performed instead of the objec-
tive measure used in this paper, the definition of resolution will
likely change also. Nevertheless, we believe that the trend that
we have observed in this paper will not change significantly.
Because the entire elastographic process is nonstationary

[19], [20], the resolution is also nonstationary. The point-spread
function (PSF) varies with depth: 1) frequency-dependent at-
tenuation and scattering reduces the center frequency with
depth, and 2) the ultrasonic pulse elongates in front of the fo-
cus because of the varying arrival time from various sections of
the transducer, resulting in reduced bandwidth. When tissue
is compressed, it undergoes a 3-D motion. But, the nonaxial
motion has been ignored in elastography until recently. Some
recent papers have investigated these issues and reported suc-
cessful reduction of degradation because of nonaxial motion.
Accounting for other effects will degrade the resolution and
will be undertaken in future work. Thus, the results that we
have presented in this paper can be considered as the best case
scenario or the axial resolution at the focus of the transducer.
In an earlier paper [9], we described an MTF approach [8]

that may be useful in estimating resolution. However, the only
approach that worked so far to follow adequately the rapid vari-
ations in strain was adaptive stretching [9]. In another work in
which resolution was used interchangeably with window size
[3], the window shift was kept at a constant percentage of win-
dow size (∆t/T = constant); thus, ∆t was indirectly changed.
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Because R ≈ t, any plot versus resolution was off by a constant
factor.
Céspedes [4] has shown that very thin soft targets can be

detected with elastography. Soft targets undergo larger strains
that contribute to larger decorrelations. It was shown that
paper-thin soft layers (20 times softer) are visible in elas-
tograms because of the noisy strain estimates around the soft
area caused by large decorrelation. But, similar thickness hard
layers (20 times harder) are not visible. This motivated us not
to use simple detection as a resolution criterion but to use the
ability of replicate the strain profile within a predefined error.
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Appendix

A. Least-Squares Fit to a Plain Surface

We want to fit a plain surface through some 3-D data points.
Many textbooks address fitting a straight line through 2-D
data. However, expression for fitting a plane surface through
3-D data are not commonly available. If the functional re-
lationship between the dependent (z) and independent (x, y)
variables is approximated by

z(x, y) = a+ bx+ cy, (A.1)

then, for an observation set of xi,yj , and zi,j , the least-squares
fit to a plane surface can be expressed in the following ma-
trix form: [

a
b
c

]
= M−1n (A.2)

where [see (A.3), top of previous page].
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