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Pulse Echo Signal Processing 
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Abstract-This paper considers the effects of using spectral cor- 
relation in a maximum likelihood estimator (MLE) for backscat- 
tered energy corresponding to coherent reflectors embedded in 
media of microstructure scatterers. The spectral autocorrelation 
(SAC) function is analyzed for scatterer configurations based on 
the regularity of the interspacing distance between scatterers. It is 
shown that increased regularity gives rise to significant spectral 
correlation between different frequencies, while scatterers that 
are uniformly distributed throughout a resolution cell result 
in no significant correlation between spectral components. This 
implies that when a true uniform distribution for the effective 
scatterers exists, the power spectral density (PSD) is sufficient 
to characterize their echoes. However, as the microstructure 
scatterer distribution becomes more regular, SAC terms between 
different frequencies become more significant. Experimental re- 
sults compare the performance of an adaptive MLE using the 
SAC and PSD characterizations of the grain echoes. The MLE 
results for 15 A-scans from stainless steel specimens with three 
different grain sizes indicate an average 6-dB signal-to-noise ratio 
(SNR) improvement in the coherent scatterer (flat-bottom hole) 
echo intensities for estimators using the SAC characterization, as 
opposed to estimators using the PSD characterization. 

I. INTRODUCTION 

T HIS paper presents a linear estimator, based on the 
maximum-likelihood estimator (MLE) derived by Dono- 

hue [l], for estimating the ultrasonic cross section (reflectivity) 
of isolated flaws and impurities within materials composed 
of regular microstructures using RF broadband ultrasonic A- 
scans. The estimator incorporates both the RF phase and 
magnitude distinctions between the spectra of the echoes 
from regular microstructure and from disruptions in the mi- 
crostructure regularity. An adaptive implementation of this 
estimator is presented for estimating A-scan amplitudes cor- 
responding to backscattered energy from coherent scatterers 
embedded in the microstructure of the material. This adaptive 
implementation processes A-scan segments corresponding to 
the duration of the illuminating pulse. The microstructure 
echoes are characterized from a neighborhood of sample points 
around the segment of interest. This segment is shifted over 

Manuscript received June 3, 1992; revised December 10, 1992; accepted 
January 25, 1993. This work was supported in part by the National Science 
Foundation under Grant MP-8920602. by the National Cancer Institute and 
the National Institutes of Health under Grant CA52823, and by the Biomedical 
Research Support Grant Program, Division of Research Resources, National 
Institute of Health under Grant BRSG S07 RRO7114-23. 

K. D. Donohue and T. Varghese are with the Department of Electrical 
Engineering, University of Kentucky, Lexington, KY 40506-0046. 

J .  M. Bressler and N. M. Bilgutay are with Department of Electrical and 
Computer Engineering, Drexel University, Philadelphia, PA 19104. 

IEEE Log Number 9209519. 

the A-scan in a sliding window fashion and the estimator 
parameters are computed for each new segment position. The 
estimator parameters are updated at each new position in 
order to compensate for the nonstationary behavior of the 
backscattered energy received over the duration of the A- 
scan [2]. The nonstationary behavior results from frequency 
dependent absorption, scattering, and diffraction, which occurs 
as the pulse propagates through the material [3], [4]. 

Scattered energy from microstructures within materials lim- 
its the ability of ultrasonic pulse echo systems to detect small 
isolated flaws or changes in the microstructure properties. Sev- 
eral approaches have been taken to improve the detectability 
of target structures of interest in these situations. If the average 
size of the scatterers (which comprise the microstructure) 
is known a priori, then an optimal frequency range for the 
scanning transducer can be chosen to limit the sensitivity of 
the illuminating energy to these scatterers, while maintaining 
sensitivity to flaws and defects modeled by larger scatterers 
[3]. A related approach involves spectral filtering broadband 
pulse echo signals, which lends itself to adaptive filtering in 
cases where grain size is unknown or changing. 

The utilization of greater detail from the microstructure 
echoes has been considered for nondestructive testing ap- 
plications [ 5 ] ,  [6], and medical applications [7], [g] (tissue 
characterization). For example, the work by Landini et al. 
[7] characterized the regular spacing of the microstructure 
scatterers with the spectral signature of the A-scan using 
gamma distribution parameters. It was demonstrated that both 
the average scatterer spacing and the regularity of that spacing 
could be characterized with gamma distribution parameters 
estimated from the periodicity and attenuation of the cepstral 
peaks. The work presented in this paper utilizes distribution 
properties of the microstructure scatterers in order to detect 
changes due to an embedded flaw or anomaly. Original con- 
tributions are made by introducing a spectral two-dimensional 
autocorrelation (SAC) function of the echo spectra for char- 
acterizing scatterer distribution properties, and using it in an 
estimator for detecting coherent scatterers embedded in the 
microstructure scatterers (i.e., small flaws in materials, or 
tumors in biological tissue). Experimental results indicate that 
significant improvements in the signal-to-noise ratio (SNR) 
occur when correlation coefficients of the Fourier spectrum 
are included in the characterization of the grain echoes. 

Section I1 illustrates a relationship between the expected 
SAC values and regularity in the microstructure scatterers, 
where the effective interspacing distance of the microstructure 
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scatterers is modeled by a gamma distribution. Section I11 
discusses the application of the MLE to A-scans where regular 
microstructures may exist. Section IV presents experimental 
results demonstrating the significance of the SAC values on 
the MLE performance. Performance results for 15 different 
A-scans (stainless steel samples with 3 different grain sizes) 
indicate that when the SAC values were used, an average 6-dB 
improvement in S N R  occurs over cases when only the power 
spectral density (PSD) values were used. 

11. SPECTRAL COWLATON 

Common ultrasonic signal processing techniques employ 
deconvolution methods involving Wiener and matched filtering 
approaches [g], [lo]. In these filters the PSD is typically used 
to characterize the effects of microstructure echoes and the 
system responses. The PSD indicates the correlation between 
the same frequency components of the return echo spectra. 
This is simply the expected energy for a random process as 
a function of frequency. Therefore, frequency shifts in the 
concentration of ultrasonic energy between the transmitted 
and received pulse (due to frequency dependent attenuation in 
propagation) are observed as changes in the PSD. This section 
considers cases where correlation exists between different 
spectral components of the return echo and its significance. 
It is shown that when scatterers are uniformly distributed, 
the expected values of the cross correlated frequency samples 
are insignificant. In this case, only the frequency samples 
correlated with themselves (equivalent to the PSD) dominate 
the SAC. When regularity exists for the scatterer positions, 
however, the correlation terms between different frequencies 
become significant. In the following discussion, neither the 
system response (illuminating pulse characteristics), nor the 
frequency dependent scattering is considered in order to isolate 
the effects of microstructure regularity. 

Consider a distribution of scatterers relative to the axial 
A-scan distance denoted by: 

N 

n=l  

where t denotes the time axis (related to distance via the 
velocity of the pulse), N is the total number of scatterers, 
An denotes the strength or reflectivity of the nth scatterer, 
and Tn represents the delay associated with the nth scatterer 
position. The Fourier transform of(1) is: 

N 

n= 1 

where an is the absolute value of A ,  , and 7, corresponds to 
T, +T for An negative and to T, for An positive. For a given 
configuration of scatterers, the SAC function is a complex 
surface obtained by correlating the values of G ( f )  with its 
complex conjugate: 

N N  

where f1 and f2 are continuous variables forming the bi- 
frequency plane. The SAC function in (3) is related to the 
spectral correlation density function [ 1 l], which is used to 
characterize multipath propagation and cyclostationary behav- 
ior in communication signals. The form of the SAC function 
used here is consistent with the covariance matrix used in the 
MLE presented in the next section. The effect of scatterer 
distribution properties on the SAC function is demonstrated 
via two cases. 

For case one, consider the expected value of S( f1 ,  f2) ,  

where the random variables of (2) are taken to be the positive 
scattering strengths (ai) and associated phase ( ~ i ) .  Assume that 
the random variables associated with a; and T; are uncorre- 
lated. If the phase related to the position of the scatterers within 
the resolution cell are uniformly distributed, the expected value 
for S( f1 ,  f2)  can be written as: 

. N N  

. N  r 4  

where E[.] is the expected value operator, and ,B is the axial 
distance corresponding to the resolution cell (or signal window 
length). The two summation terms in (4) result from the 
correlation between two different scatterers (cross terms of 
(3)), and correlation of a scatterer with itself (quadratic terms 
of (3)). These integrate to obtain: 

N N  

n=l  m=l 
m#n 

n=l  

where sinc(s) = s i n ( r s ) / ( m ) .  Note that only the p param- 
eter (which relates to the window over which the scatterers 
are observed) affects the shape of the SAC function in (5 ) .  
The expected values of the scatterer strengths in this equation 
mainly affect the overall magnitude of the SAC function 
and not the particular shape. The components of the SAC 
function that are off the f~ = f2 axis are dominated by 
the sinc(p(f1 - fz ) )  factor in the quadratic term, since 
the other sinc functions in the cross product terms will be 
significantly smaller (particularly for f1, fz > (l/,B)). The 
critical information derived from the SAC function in this 
case lies mainly along the f1 = f2 axis. In cases where 
significant frequency dependence of the scatterer strength 
exists (i.e., E[anam] and E [ a i ]  vary as functions of f )  
the PSD indicates the nature of the frequency dependent 
attenuation by magnitude variations as a function of frequency. 
Therefore, when the effective scattering centers are uniformly 
distributed throughout the observation cell, no significant 
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correlation between different spectral components is expected, 
and the PSD is sufficient for characterizing the scatterers. 

In the second case, consider regular spacing for the N 
microstructure scatterers within the cell of interest. In this 
case the information concerning the average scatterer spacing 
and the regularity of that spacing affects the SAC function 
components for f1 # f2. This is seen by performing a change 
of variables. Let: 

An = ; rn 
(6)  

where rn is the effective time corresponding to the nth 
scattering center relative to the beginning of the cell. For a 
resolution cell containing N effective scattering centers, 7, 
corresponds to the scattering center where n - 1 scattering 
centers precede the nth scattering center, and N - n scattering 
centers follow. Therefore, the effective time delay of each of 
the scatterers can be expressed as rn = nA,. Substitute this 
expression into (3) to result in: 

N N  

s(f1, f2) = C C anamexp(-j2r(flnAn - f 2 m ~ m ) ) -  
n=l m=l 

If scattering centers are equally spaced (i.e., An equals A for 
all n), (7) becomes: 

N N  

S(f11.f~) = E C anamexp(-.QrA(f~n - f2m)) (8) 

If s(f1, f2) is considered only for the PSD values ( fl = f2), 

then Q. (8) reduces to: 

n=l m=l 

N N  

n=l m=l 

Note that in (9), when f is a multiple of l/h , all terms in 
the summation are in phase, and a local maximum occurs. 
As a result of the periodic peak in the PSD, correlation 
between frequencies separated by l / A  is expected. Therefore, 
significant correlation values can be expected for spectral 
components when f1 and fi are separated by multiples of 
l /A .  In addition, these SAC values contain the expected phase 
differences between spectral components, such information is 
not available in PSD values. In the following discussion, the 
effect of increasing the variance associated with the average 
interspacing scatterer distance is examined. 

Consider a gamma distribution for the A, random variable 
given by: 

p(A; v , h )  = 
(g)(+)"-' - v a  

exP( -) (10) A (v - l)! 

where h is the average interdistance scatterer spacing ( h = 
E[A]), and v is the order of the gamma distribution, which is 
related to the variance of the interdistance spacing ( E[(A - 
A)2] = h'/,). The gamma distribution is used here because 
it is a flexible model for representing scatterer regularity. It can 
be used to model a wide variety of scatterer distributions, from 
nearly uniform (v < 10) to almost deterministic (v > 1000). 
The expected value of the SAC function, when A is an 

- 

Fig. 1. Contour plots for expected SAC magnitude functions in the 
bi-frequency plane (f1, fz axes in megahertzlfor randomly placed scatterers 
with gamma distributed interdistance spacing A and order v . (a) A-= 0 . 2 ~ s  , 
v = 10. (b) E = O. lps ,  Y = 10. (C) A = 0 . 2 ~ ~ .  v = 100. (d) A = 0 . 1 ~ s  
, v = 100. 

and 

d(&, v, f) = v tan- 27rf- . 

Fig. 1 presents contour density plots of the SAC magnitude 
for 4 different cases of (1 1). For these plots the scatterer 
strength values are assumed wide sense stationary with an 
independent Rayleigh distribution. This implies that E[a,a,] 
(for m # n)  equals (r /4)E[a:]  for all 7n and 71.. In addition, 
only 1 PS/ h scatterers (truncate to integer value) are included 
in the summation, with the SAC function evaluated at 25 
frequencies from 1 to 25 MHz. Fig. 1 (a) and (c) has the 
same average interspacing scatterer distance of h = 0.2 PS, 
with different orders v. Likewise, Fig. 1 (b) and (d) has the 
average interspacing scatterer distance of h = 0.1 PS, with 
different orders v. 

When v equals 10, very little regularity exists in the scatterer 
spacing. As a result Fig. 1 (a) and (b) resembles the case for 
uniformly distributed scatterers (4). The peak of this function 

l( :) (13) 
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Fig. 2. Contour plots for expected SAC magnitude functions estimated from 
stainless steel A-scan data. The bi-frequency plane is labeled in terms of the 
DFT index ( 1 corresponds to dc, and 7 corresponds to 9.5 MHz): (a) Sample 
with average grain size 86 pm. (b) Sample with average grain size 160 pm. 

exists as a line along the f1 = fz  diagonal. Even at this 
low order, the nature of the energy concentration around the 
diagonal is sensitive to the underlying scatterer spacing. When 
the order is increased to 100, as in Fig. 1 (b) and (c), local 
maxima in the off-diagonal components due to the regular 
spacing are observed. Note that the local maxima components 
are located l / A  Hz away from the center diagonal in the 
horizontal and vertical directions. Local maxima along the 
PSD values also occurs at multiples of j1 = f 2  = 5 MHz 
in Fig. 1 (c), and 10 MHz in Fig. 1 (d). The PSD peaks 
are not detectable at higher multiples of l/E Hz, even when 
observing direct plots of the PSD [12]. The SAC, however, 
indicates correlation between these spectral regions. 

The phase plots are difficult to present and graphically 
interpret due to the discontinuities from the 27r modularity, and 
therefore, are not presented. However, it was observed from 
examining various phase plots that the phase changes more 
rapidly over the anti-diagonal of the SAC for the scattering 
structures with greater interspacing distance. This result is 
expected from the scaling relationship between (fl - f2) factor 
and a in function q5(.) (13) as used in the quadratic term of 
(1 1). In general, the phase in the off-diagonal terms indicates 
an average phase difference between corresponding spectral 
regions. 

In this section a relationship between the scatterer spacing 
distribution and the SAC function was demonstrated. Other 
effects were not considered, such as non-Rayleigh distribu- 
tions of the scattering strengths, frequency dependence of the 
scatterer strength, effects of the pulse echo system response, 
and nongamma distributions for the scattering spacing. If 
quantitative estimates of distribution parameters are required, 
such effects must be considered. Fig. 2 presents sample SAC 
functions estimated from twenty 64 point A-scan segments 
from stainless steel echoes. The limited bandwidth of the pulse 
echo system results in a limited frequency window over which 
the expected SAC function is observed. The resultant SAC is 
a point by point multiplication of the system response SAC 
function and the expected SAC from the scatterers. Note that 
the SAC function for stainless steel resembles the low-order 
gamma function (i.e., no local minimum in the off-diagonal 
region), which is expected for echoes from randomly oriented 
grain boundaries. In other materials, such as biological tissue 
[12], a more regular interdistance scatterer spacing can result 
in discernible local minima in the off-diagonal terms. 

The SAC function can be directly applied in an adaptive 
filter to characterize echoes from spatial regions known to 
contain only microstructure. Neighboring regions can be tested 
based on this characterization, to determine if the echoes 
significantly deviate from the previously characterized mi- 
crostructure echoes. In the next section, a direct application 
of the SAC is presented for detecting isolated disruptions in 
the microstructure by an embedded coherent scatterer. This is 
applied adaptively to reduce the need for precise knowledge 
of the material ultrasonic properties. 

111. THE MLE FOR A-SCAN AMPLITUDES 
FROM A COHERENT SCA'ITEFCER 

This section considers extending the application of the MLE 
derived by Donohue [ l ]  to include the case when regularity 
exists in the microstructure scatterers. The MLE was based 
on sampled A-scan segments (corresponding to an echo from 
a resolution cell of interest) modeled in terms of its DFT 
components (frequency samples). It was assumed that each 
DFT component for an echo received from a resolution cell 
had a complex Gaussian distribution. The target scatterer 
was modeled as an embedded coherent scatterer within the 
resolution cell. The MLE for the target ultrasonic cross section, 
a,  was given by: 

where R is a vector of complex elements representing the 
significant DFT components of the received echo (those cor- 
responding to the bandwidth of the illuminating pulse), T 

denotes the relative position of the coherent scatterer within 
the resolution cell (T equal to zero corresponds to the center), 
C is the covariance matrix for the jointly distributed DlT 
components, S is a vector denoting the DFT components 
of the illuminating energy within the resolution cell, and T 
is a diagonal matrix representing the phase shift on each 
component of S due to a nonzero T .  For the implementation 
described later in this paper, processing is done with respect to 
the center of the cell such that T is zero, and T is the identity 
matrix. Therefore, the critical components for implementing 
this estimator are C and S. 

The covariance matrix C is effectively a sampled version 
of the SAC introduced in the previous section. Therefore, 
the diagonal elements of C are samples of the microstructure 
echo PSD. The MLE in [ l ]  characterized DFT samples of the 
RF microstructure echoes within a given resolution cell by a 
stationary zero-mean Gaussian distribution, which resulted in 
C being a diagonal matrix. In this paper, (14) is considered 
when the microstructure can be characterized in off-diagonal 
terms for C. If the DFT coefficients can be characterized by 
a joint zero-mean Gaussian distribution for a nonstationary 
process, (14) is the MLE estimate of the coherent scatterer 
cross section. In cases where the distribution of the DFT 
coefficients deviate from a joint Gaussian distribution (i.e., 
due to a small number of scatterers per resolution cell), the 
optimal processor will typically require coefficients for higher 
order (nonlinear) terms of the received signal. Such deviations 
are not considered in this paper. 
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In order to implement (14) on A-scan data, S and C must 
be determined. Since the C matrix represents the expected 
scattered energy from the unresolvable scatterers, it can be 
estimated from the A-scan data under the assumptions that 
negligible attenuation and similar microstructure regularity 
exists over a neighborhood of resolution cells, and that no 
target scatterer exists within this neighborhood (not including 
the resolution cell of interest). The S vector in the MLE 
corresponds to DFT coefficients of the illuminating pulse at 
a given resolution cell. This parameter is determined from 
the characteristics of the transducer that generated the pulse, 
such as the center frequency, bandwidth, and pulseshape. 
As distortion and attenuation occur during propagation, S 
must be adjusted by accounting for the previously scattered 
energy. This updating process, however, cannot be performed 
exactly since the backscattered energy is measured over a 
finite spatial window. The choice of S can be simplified, if 
a weak scattering assumption is applied. The error that results 
from this simplification is discussed in [l].  For the A-scans 
presented in this paper, this approximation is not expected to 
generate significant error, since relatively little attenuation of 
the backscattered energy occurs over the duration of the A-scan 
(see Fig. 3 ) .  Therefore, for the implementation described in this 
paper, the elements of S remain the same for all resolution 
cells. 

It also was shown in [ l ]  that the processor of (14) was 
algorithmically equivalent to the matched filter (correlation 
receiver), when only diagonal elements of C were used. 
'Therefore, the inclusion of the off-diagonal terms can be 
interpreted as an extension of the matched filter to include 
correlation between frequency components. The matched filter 
interpretation is helpful when considering the meaning and 
effects of the S vector. In [l] it was assumed that the coherent 
scatterer is large enough such that no distortion (frequency 
dependent scattering) occurs for the echo of interest over the 
spectrum of the pulse echo. The C-' matrix characterizes 
the distortion due to the microstructure, and whitens echo 
spectra similar characteristics, while the S vector characterizes 
the undistorted echo, and enhances echoes of similar spectral 
characteristics. Therefore, the more the echo resembles the 
spectrum determined by the S vector, and the less it resembles 
the echoes characterized by C, the larger the MLE output. 

The elements of S effectively window the received DFT 
coefficients. The significant elements of S (corresponding to 
the approximate 3-dB bandwidth of the transducer) define the 
effective number of DFI  components required for the formula 
given in (14). Those elements of S that are relatively small and 
outside the bandwidth of the transducer are set to zero. Since 
the magnitude of S is not adjusted to reflect the true energy 
incident upon the resolution cell, the computed a,! is not a 
true ultrasonic cross section of the coherent scatterer. Instead, 
these estimates represent relative amplitudes corresponding to 
backscattered energy from the coherent scatterer. 

Since the estimator in (14) corresponds to scatterers located 
at the center sample in the resolution cell of interest (i.e., 
T = 0 and T is the identity matrix), this suggests processing 
the A-scan in a sliding window fashion, such that every A- 
scan sample can be at the center of the processing window. 

Flaw 

1.8 l l 

-1.8 : ' " ' " " ' I ' ' ' " " " I ' ' ' " " " l  

0 6.4 12.8 19.2 

Microseconds 

-2.2 1 " ' " ' " ' l ' " " " " " ' " " ' ' ' l  
0 6.4 12.8 19.2 

Microseconds 

(C) 

Fig. 3. Comparison of A-scan amplitude estimations. (a) Original A-scan 
with flat-bottom hole corresponding to the indicated flaw position. (b) Pro- 
cessed A-scan for MLE using only diagonal elements of covariance matrix. ( 
c) Processed A-scan for MLE using all elements of covariance matrix. 

Let the samples for the resolution cell under consideration be 
denoted by vector: 

r ( n ,  L )  = [.(R, - L / 2 ) ,  . . . r (n ) ,  . . . , ~ ( n  + L/2)IT (15) 

where .(R,) is the nth time sample of the RF A-scan, R, is 
the center of the sample relative to the resolution cell, and 
L + 1 is the number of samples in the resolution cell ( L  + 1 
should be chosen to correspond to the number of samples 
in a pulsewidth), and superscript T denotes the transpose 
operation. Therefore, to check for a target scatterer at all 
possible samples in the A-scan, the window described by 
r(n ,  L )  can be applied at all A-scan points, and the MLE 
performed for each increment of n. 

In order to perform the MLE on the segment described in 
(15), sample points must be chosen for estimating C. The 
examples presented in this paper use samples on both sides 
of the resolution cell of interest (a noncausal implementation). 
L e t  a data segment, used to estimate C, be denoted by the 
vector: 

ri(n, L )  = [r(n+iL/2-L/2) ,  . . . , r ( ? ~ + i L / 2 + L / 2 ) ] ~  (16) 

where 71 denotes the center of the segment in which the 
estimation is being performed, and i is the index for neigh- 
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boring segments (a negative i represents segments prior to the 
segment of interest). Note that each increment of i results in 
a 50% overlap between adjacent segments, which is done to 
improve efficiency of the SAC estimates from the given data. 
Each segment used to estimate C is multiplied by a Hamming 
window, and a DFT is taken of the segment. The C matrix is 
then estimated from the resulting DFT vectors by: 

W 

E(n) = C R-i(n, L)Rf_;(n,  L )  + Ri(n, L)Rt(n, L )  (17) 
i=2 

where Ri(n> L )  is the DFT vector of ri(n,  L ) ,  and 2(U’ - 1) 
is the total number of segments used to estimate C. Note 
that i begins with 2 in order to prevent the segments used in 
estimating C from overlapping with the segment of interest. 
In general, to create a full rank k by k covariance matrix, at 
least IC independent A-scan segments should be used to create 
the &(n, L )  vector needed in (17). In addition, only DFT 
components with significant energy should be used from the 
Ri(n, L )  vector to create C. These are components typically 
within the 3- to 6-dB range of the transducer. 

Iv. COMPARISON OF EXPERIMENTAL RESULTS 

This section presents performance results for two cases 
of the MLE applied to experimental A-scans from stainless 
steel cylinders of various grain sizes. In the first case C 
is restricted to a diagonal matrix (PSD values), and in the 
second case the off-diagonal terms are also included (SAC 
values). Sample covariance matrices were estimated from 
grain-only A-scans and significant terms were observed in 
the off-diagonal elements. The values in the first off-diagonal 
terms ranged in magnitude from 25 to 70 % of the diagonal 
elements. The results in this section demonstrate that these 
terms are significant in discriminating between resolution 
cells containing only microstructures and those that include 
a coherent scatterer. 

The A-scans used in this comparison were obtained from 
three 2-in diameter stainless steel rods that were heat treated 
to obtain various grain sizes. A flaw was simulated in each 
specimen by drilling a flat-bottom hole of 4.22-mm diameter. 
The samples were placed in a water bath and scanned with a 
1/2-in KB-Aerotech Alpha transducer with a center frequency 
of 5 MHz and a Gaussian-shaped spectrum. The received 
echoes were digitized at a sampling rate of 100 MHz, and each 
measurement was then averaged 200 times in a LeCroy 9400 
digital oscilloscope to reduce time varying noise. Average 
grain sizes for the three samples were 86, 106, and 160 pm. 
These values were determined from micrographs using a linear 
intercept method [13]. 

The time-domain Gaussian-shaped pulse, which approxi- 
mated the illuminating pulse for each resolution cell, corre- 
sponded to a window duration of 56 samples. The cut-off 
points defining the time-domain pulse duration were the points 
where the Gaussian function was 97 % down from the peak 
value [l]. The 3-dB transducer bandwidth was approximately 
2.5 MHz. The resolution cell samples were increased to 64 
samples so that an FFT could be applied. In addition, only 
4 DFT components corresponded to the bandwidth of the 

segmented A-scan, and 5 segments, one on each side of the 
segment of interest, were used in computing C (i.e., W = 6 
in (17)). Thus the effective dimension of C used in the 
MLE computations was 4 by 4, and the S parameter was 
approximated by a Gaussian window with zero (linear) phase. 
Problems associated with the limited frequency resolution are 
discussed at the end of the section. 

An example of an unprocessed A-scan for the 160-pm 
average grain size is shown in Fig. 3 (a). The results of 
processing this A-scan with the MLE using the diagonal 
elements of C is shown in Fig. 3 (b), while the results for the 
case where all elements of C were used is presented in Fig. 3 
(c). Note for this particular case the MLE only uses diagonal 
elements which failed to estimate an A-scan amplitude for the 
flaw that was high enough to be distinguished from the grain 
noise. However, the MLE using the full covariance matrix 
succeeded in discriminating the flaw from the grain echoes. 

Further results are presented in terms of the ratio between 
peak flaw intensity to peak grain echo intensity within a given 
A-scan. The intensity is obtained from an RF A-scan by sliding 
a window of a length equal to the resolution cell (i.e., 64 
samples) over each sample in the A-scan. Every element in the 
window is squared and then averaged. The resulting intensity 
corresponds to the sample position at the center of the window. 
The highest peak associated with the flaw echo resolution cell 
is divided by the highest peak associated with the grain echoes. 
This ratio is expressed in decibels and referred to as the peak 
SNR. Note that a peak SNR value greater 0 dB implies that 
the A-scan intensity corresponding to the flaw is greater than 
the largest intensity corresponding to the grain. In this case a 
threshold exists which can detect the flaw with no false alarms. 
For the A-scans shown in Fig. 3, only Fig. 3 (c) would result 
in a peak SNR greater than 0. The flaw in the intensity images 
corresponding the A-scans in Fig. 3 (a) and (b) cannot be 
detected by a threshold test without false alarms. 

Fig. 4 compares the peak S N R  results for both cases of the 
MLE. Five A-scans were obtained from each stainless steel 
specimen by moving the transducer relative to the flat-bottom 
hole, such that the hole remained within the beam field. Each 
set of three bars on the graph indicate the peak SNR for the 
original A-scan and the two cases for the processed A-scan, 
which are the MLE using only the diagonal elements of its 
covariance matrix, and the MLE using all elements in the 
covariance matrix. 

Fig. 4 (a) presents the results for five different A-scans 
obtained from the 160 pm average grain size specimen. Note 
that in every case the MLE with the full covariance matrix 
significantly enhanced the SNR (on the order of a 10 dB 
increase), while the MLE with the diagonal covariance matrix 
failed to enhance the SNR above 0 dB in three of the cases ( A- 
scan numbers 1, 4, and 5). The performance for the other two 
cases (A-scan numbers 2 and 3)  is consistent with examples 
presented in [l]. In these cases the flaw was more centered in 
the interrogating beamwidth. 

On average, the MLE with the full covariance matrix 
performed better than the MLE with the diagonal covariance 
matrix by about 6 dB. Fig. 4 (b) and (c) present SNR results 
of 106- and 86-pm average grain size specimens. Similar 
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Fig. 4. Comparison of SNR for the two cases of the MLE. (a) Five A-scans 
from 160-pm average grain size stainless steel specimen. (b) Five A-scans 
from 106-pm average grain size stainless steel specimen. ( c )  Five A-scans 
from 86-pm average grain size stainless steel specimen. 

enhancement results are observed; however, in these cases 
enhancement is not as critical as in Fig. 4 (a), since the original 
S N R  is greater than 0 dB to begin with. The purpose of 
these results is to demonstrate the consistency of the estimator. 
Further experimental results and details on implementing the 
MLE are presented by Bressler in [ 141. 

The inconsistency of the MLE that utilized only PSD values 
can be attributed to the limited resolution in the frequency 
domain. Discrimination based on the PSD characterization 
relies on differences between the grain and target echo spectra. 
The grain echoes tend to have a higher frequency content, and 
as a result simple bandpass filtering can be applied [2], [4]. 
In these examples, however, estimating the spectra with the 
DIT algorithms on the 64 point segments limits the resolution 
in the frequency domain, and therefore, reduces the power 
to discriminate between the target and grain echo spectra. In 
cases where a significant S N R  existed to begin with, some 
losses in SNR resulted from the diagonal covariance matrix 
MLE due to distortion from the low resolution estimates of the 
PSD. On the other hand, the MLE that utilized the off-diagonal 

terms of the covariance matrix performed well in spite of the 
limited resolution in the frequency domain. Results presented 
by Bressler [ 141 indicate improved performances for the MLE 
using the PSD characterization when the processing cell size 
was increased from 64 to 128 samples per cell (note the spatial 
resolution is reduced in this case). 

V. CONCLUSIONS 

The experimental results indicate that using SAC values 
enhances the detectability of isolated flaws embedded in 
grain noise, over simply using the PSD information. This is 
particularly true when limited differences exist between the 
power spectra for the flaw and the grain, and some form of 
regularity exists for the grain structures. While a relationship 
was demonstrated between the spacing of the scattering sites 
and the off-diagonal terms of the covariance matrix, the ability 
of the covariance matrix to characterize distribution properties 
of the scatterers is not limited to this form of regularity. Other 
effects such as distribution of scattering strength, frequency 
dependent scattering, and dispersion can also affect the off- 
diagonal terms of the covariance matrix. The actual cause for 
the off-diagonal terms in the MLE covariance matrices that 
improved the performance for the data used was not identified 
in this paper. It is believed that consistencies in the grain 
configurations, observed over short segments, result in low- 
order regularity for the effective scattering center positions. 
The SAC function did not characterize the scatterer spacings 
corresponding to the actual grain diameters, since a 160-pm 
spacing in a material with a 5 . 8 - W s  velocity corresponds to 
a l/h equal to 36 MHz. This would not be detected over 
the 4- to 5-MHz bandwidth used in the experimental results 
presented in this paper. It is most likely that the effective 
scattering centers correspond to clusters of grain scatterers 
(or isolated grain boundaries at particular orientations) related 
to the grain distribution and the illuminating energy. These 
notions are currently being examined via computer simulation 
studies. 

Experimental results indicate that the application of the SAC 
characterization in the MLE can improve the detectability 
of small flaws or defects within a resolution cell. Since no 
quantitative relationship was presented for the SAC and grain 
structure, this application is limited to adaptive implemen- 
tations where the covariance matrix can be estimated for a 
given resolution cell of interest. The stability of the inverse 
computation for C was not a problem in processing the 
experimental data. If for a given application, however, ill- 
conditioned matrices occur (usually seen by large sporadic 
spikes in the processed A-scan), stability can be improved 
by either including more independent data segments in the C 
estimation, or by eliminating DIT coefficients on either end 
of the transducer spectrum, where they may be significantly 
smaller in magnitude than the coefficients in the rest of the 
spectrum. 
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