ABSTRACT

This dissertation investigates the positron-emitting radioisotopes of scandium: ${}^{43}Sc$ ($t_{1/2} = 3.891$ h, $\beta^+_{mean} = 476 \text{ keV}$) and ${}^{44g}\text{Sc}$ ($t_{1/2} = 3.97 \text{ h}$, $\beta^+_{mean} = 632 \text{ keV}$), and establishes their potential as alternatives to the well-established PET radionuclide 68 Ga ($t_{1/2} = 67.71 \text{ m}, \beta^+_{\text{mean}} = 829.5 \text{ keV}$). ⁴⁴gSc emits a high energy gamma of 1157 keV ($I_{\gamma} = 99.9\%$) which delivers excess dose to patients and may reduce image quality. Thus, 43 Sc, which has lower energy gamma emissions (E_y = 372.9 keV; I_{γ} = 22.5%), may be preferred in clinical settings. We, and others, have investigated methods to produce ^{44g}Sc, but production of ⁴³Sc has largely been neglected due to the need for deuterons and/or enriched material. ⁴³Sc and ^{44g}Sc's roughly four-hour half-lives allow for biodistribution images > 4 hours post-injection and may be transported to nearby clinics without a cyclotron on-site. Both ^{43/44g}Sc exist primarily in the +3-oxidation state similar to therapeutic isotopes such as ¹⁷⁷Lu and ¹⁶¹Tb. The chemical similarity of scandium to light lanthanides suggests that scandium-labeled agents may have comparable biodistributions to the same agents labelled with ¹⁷⁷Lu or ¹⁶¹Tb. This dissertation explores cyclotron production methods for ^{43/44g}Sc on enriched ^{4x}CaO targets, comparing production yields and radionuclidic purity between several production routes accessible on a small cyclotron. This work also investigates ⁴³Sc's and ^{44g}Sc's potential *in vitro* and *in vivo* for cancer imaging applications. Phantom studies were performed on clinical PET/CT scanners to compare contrast and recovery between ⁴³Sc/^{44g}Sc and other conventionally used positron-emitting radionuclides. Additionally, [^{43/44g}Sc]Sc-FAPI-46 and ^{[68}Ga]Ga-FAPI-46 PET/CT imaging were compared in a murine model of pancreatic ductal adenocarcinoma. Finally, the uptake and biodistribution of [44gSc]Sc-DOTA-TATE, [68Ga]Ga-DOTA-TATE, and [¹⁶¹Tb]Tb-DOTA-TATE was compared through in vitro and in vivo PET/CT and SPECT/CT studies to assess theranostic potential in neuroendocrine tumors.