The production of PET tracers utilizing small accelerators

John Ralph Votaw

The goal of positron emission tomographic (PET) studies is to utilize radiotracers to provide fundamental information that will lead to a better understanding of the physiology in both diseased and healthy tissue. In order for PET to become a viable clinical modality, these tracers must be produced reliably and efficiently. Work has concentrated on developing a cyclotron laboratory dedicated to the efficient production of the most commonly used PET tracers. Considerable effort has been directed towards understanding the subtleties of all of the subprocedures involved. As a result of this work, the success rate of delivering radiopharmaceuticals on demand to the nuclear medicine clinic is now above 95%.

In order to further facilitate performing PET studies with minimal professional support, a timeof-flight detector system has been developed to noninvasively measure input functions that are required in applying compartmental models to the data. Its potential utility has been demonstrated with phantoms; testing and evaluation is currently being studied in human patients.

The feasibility of producing PET tracers in a manner consistent with the operation of a clinical PET center has been demonstrated. Since FDG is the tracer in highest demand (over 50% of all studies), the effort has concentrated on the production of this model compound. As a result of this work, the amount of FDG that may be produced in a single synthesis at the University of Wisconsin-Madison has increased by a factor of 25 in the last five years. During the same period, the number of man-hours needed to perform a FDG synthesis has decreased by a factor of 10 and the radiation dose received by the chemist per mCi of starting material has decreased by a factor of 100. In addition to these advances, the number of successful syntheses between failures has increased by a factor of 20. This improvement has been made possible by a thorough understanding of all aspects of the production of PET tracers and by intelligent monitoring of the parameters that have the greatest effect on the outcome of the synthesis.