The Development of PET Techniques to Study the 5-HT_{1A} System

Dustin W. Wooten

Under the supervision of Bradley T. Christian, Ph.D.

At the University of Wisconsin-Madison

April 16, 2013

The serotonin_{1A} (5-HT_{1A}) system has been implicated in a wide variety of neuropsychiatric disorders. PET imaging provides an excellent method of analyzing 5-HT_{1A} physiology. This thesis focuses on the development [¹⁸F]MeFWAY, laying the groundwork for translation into humans, and two of its isomers for PET assay of the 5-HT_{1A} system. As presented, [¹⁸F]MeFWAY exhibits desired in vivo imaging properties similar to the commonly used 5-HT_{1A} PET antagonist [¹¹C]WAY-100635 providing the advantage of the longer lived ¹⁸F label and simpler radiosynthesis. Furthermore, the [¹⁸F]MeFWAY isomers demonstrate characteristics of potential use for measuring changes in endogenous 5-HT competition. Lastly, results will show the utility of [¹⁸F]MeFWAY for in vivo measurement of receptor density (B_{max}) and affinity (1/K_{Dapp}) indicating separate measurements of B_{max} and K_{Dapp} are more sensitive to group differences than the widely used binding potential alone.