Skip to Content

Radiological Sciences Training Grant


The Radiological Sciences Training Grant supports Ph.D. and postdoctoral research related to cancer. The goal of this training program is to prepare physicists and engineers for research careers in radiological physics and dosimetry as well as in functional, anatomical, and interventional medical imaging as it applies to the detection and treatment of cancer.

Faculty trainers in this program are committed to excellence in research broadly applied to cancer treatment, diagnosis, and prevention. We take a multi-disciplinary approach that is strongly image-science based and is increasingly molecular-focused. Trainees are immersed in this comprehensive research environment. Research training is available in every major area of physics involved with cancer treatment and diagnosis, cancer biology, and in emerging areas of molecular imaging.


Principal Investigator: Timothy Hall, Ph.D.

Administrator: John Vetter, Ph.D.


The Radiological Sciences Training grant supports 10 predoctoral trainees and 3 postdoctoral trainees. About 4-5 training grant openings are filled each year to replace individuals rotating off because of graduation or completion of training. Nominations for training grant positions are made by either the student's advisor or the faculty advisor/sponsor in the case of postdoctoral nominations. Nominations include a description of the area of research, the cancer relevance, and an agreement that the student will fulfill the requirements of the training grant, detailed below. In most cases students must have reached dissertator status to be considered for a training grant position. To assure that a broad research area is included amongst trainees, faculty members will generally not have more than one advisee on the grant.

Appointment Requirements include the following:

  • Thesis research must be focused on the broad area of diagnosis, treatment, or treatment monitoring of cancer
  • Trainees must have had, or be enrolled in, a course in cancer biology
  • Trainees must have had, or be enrolled in, a course in research ethics training
  • Trainees must participate in the annual Radiological Physics Training Grant symposium; in addition, trainees must prepare a progress report each spring.
  • Authors of papers and theses must acknowledge partial support of the training grant in their publications
  • Appointments cannot exceed 5 years for predoctoral trainees and 3 years for postdoctoral trainees. Because of previous courses taken and research work completed, most predoctoral dissertators complete their work in 2 years.
  • Postdoctoral training includes preparing a K-series or an R series NIH grant application

Application forms are available for predoctoral appointees and postdoctoral research fellows. An example pre-doctoral nomination is provided for reference.

Acknowledgement Requirements

Each publication, press release, or other document about research supported by an NIH award must include an acknowledgment of NIH award support and a disclaimer such as:

"Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number T32CA009206. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health."

Prior to issuing a press release concerning the outcome of this research, please notify the NIH awarding IC in advance to allow for coordination.

Current Trainees and their Projects


Date AppointedNameAdvisorResearch
8/14/2015 Dr. Timothy Colgan Dr. Scott Reeder Developing methods for measuring liver iron concentration using Magnetic Resonance Imaging based susceptibility mapping
6/1/2017 Dr. Camille Garcia-Ramos Dr. Elizabeth Meyerand Using innovative analysis methods and applying machine learning techniques to clinical and neuroimaging measures to identify predictors of primary and functional outcomes in brain tumor patients
5/1/2017 Dr. Annelise Malkus Dr. Sean Fain Can diffusion weighted MRI delineate microstructural dimensions in inflammatory lung disease?


Date AppointedNameAdvisorResearch
5/1/2018 Alex Antolak Dr. Ed Jackson Development of a framework for the quantitative assessment of treatment response and outcome prediction in head and neck PET/MRI
5/1/2018 Leonard Che Fru Dr. Larry DeWerd Development of an optical device that measures hemodynamics in a tumor
9/1/2017 Emily Ehlerding Dr. Weibo Cai Molecular imaging for personalized immunotherapy
5/1/2017 Carson Hoffman Dr. Oliver Wieben Quantitative 4D Flow: Applications in abdominal cancers
5/1/2017 Sabrina Hoffman Dr. Bruce Thomadsen Bromine Auger electrons as a potential therapeutic agent for prostate cancer therapy
5/1/2017 Kai Ludwig Dr. Sean Fain Advancing Fluroine-19 MRI for image-guidance in cellular-based immunotherapies
6/1/2017 Andrew Santoto Dr. Tim Hall Characterizing the Cervix Microstructure with Model-Based Quantitative Ultrasonic
8/1/2017 Andrew Shepard Dr. Bryan Bednarz An ultrasound tracking algorithm for the estimation of liver vessel motion in radiotherapy

Copyright © 2011 The Board of Regents of the University of Wisconsin System